Меню Рубрики

Что характеризует коэффициент полезного действия двигателя

Электродвигатели появились достаточно давно, но большой интерес к ним возник тогда, когда они стали представлять собой альтернативу двигателям внутреннего сгорания. Особо интересен вопрос КПД электродвигателя, который является одной из главных его характеристик.

Каждая система обладает каким-либо коэффициентом полезного действия, который характеризует эффективность ее работы в целом. То есть он определяет, насколько хорошо система или устройство отдает или преобразовывает энергию. По значению КПД величины не имеет, и чаще всего оно представляется в процентном соотношении или числе от нуля до единицы.

Основная задача электрического двигателя сводится к преобразованию электрической энергии в механическую. КПД определяет эффективность выполнения данной функции. Формула КПД электродвигателя выглядит следующим образом:

В данной формуле p1 — это подведенная электрическая мощность, p2 — полезная механическая мощность, которая вырабатывается непосредственно двигателем. Электрическая мощность определяется формулой: p1=UI (напряжение умноженное на силу тока), а значение механической мощности по формуле P=A/t (отношение работы к единице времени). Так выглядит расчет КПД электродвигателя. Однако это самая простая его часть. В зависимости от предназначения двигателя и сферы его применения, расчет будет отличаться и учитывать многие другие параметры. На самом деле формула КПД электродвигателя включает намного больше переменных. Выше был приведен самый простой пример.

Механический КПД электродвигателя должен обязательно учитываться при выборе мотора. Очень большую роль играют потери, которые связаны с нагревом двигателя, снижением мощности, реактивными токами. Чаще всего падение КПД связано с выделением тепла, которое естественным образом происходит при работе двигателя. Причины выделения теплоты могут быть разными: двигатель может нагреваться в процессе трения, а также по электрическим и даже магнитным причинам. В качестве самого простого примера можно привести ситуацию, когда на электрическую энергию было потрачено 1 000 рублей, а работы было произведено на 700 рублей. В таком случае коэффициент полезного действия будет равен 70%.

Для охлаждения электрических двигателей применяются вентиляторы, которые прогоняют воздух через созданные зазоры. В зависимости от класса двигателей, нагрев может осуществляться до определенной температуры. Например, двигатели класса A могут нагреваться до 85-90 градусов, класса B — до 110 градусов. В том случае, когда температура превышает допустимую границу, это может свидетельствовать о замыкании статора.

Стоит отметить, что КПД электродвигателя постоянного тока (и переменного тоже) изменяется в зависимости от нагрузки:

  1. При холостом ходе КПД равен 0%.
  2. При нагрузке 25% КПД равен 83%.
  3. При нагрузке 50% КПД равен 87%.
  4. При нагрузке 75% КПД равен 88%.
  5. При нагрузке 100% КПД равен 87%.

Одна из причин падения коэффициента полезного действия — асимметрия токов, когда подается разное напряжение на каждой из трех фаз. Если, к примеру, на первой фазе будет напряжение 410 В, на второй — 403 В, а на третьей — 390 В, то среднее значение будет равно 401 В. Асимметрия в данном случае будет равна разнице между максимальным и минимальным напряжением на фазах (410-390), то есть 20 В. Формула КПД электродвигателя для расчета потерь будет иметь вид в нашей ситуации: 20/401*100 = 4.98%. Это значит, что мы теряем 5% КПД при работе из-за разности напряжений на фазах.

Негативных факторов, которые оказывают влияние на падение КПД электродвигателя, очень много. Есть определенные методики, позволяющие их определять. К примеру, можно определить, есть ли зазор, через который частично передается мощность из сети к статору и далее — на ротор.

Потери в стартере также имеют место, и они состоят из нескольких значений. В первую очередь это могут быть потери, имеющие отношение к вихревым токам и перемагничиванию сердечников статора.

Если двигатель асинхронный, то имеют место дополнительные потери из-за зубцов в роторе и статоре. Также в отдельных узлах двигателя могут возникать вихревые токи. Все это в сумме снижает КПД электродвигателя на 0,5%. В асинхронных моторах учитываются все потери, которые могут возникать при работе. Поэтому диапазон коэффициента полезного действия может варьироваться от 80 до 90%.

История развития электрических двигателей начинается с момента открытия закона электромагнитной индукции. Согласно ему, индукционный ток всегда движется таким образом, чтобы противодействовать вызывающей его причине. Именно эта теория легла в основу создания первого электрического двигателя.

Современные модели основаны на этом же принципе, однако кардинально отличаются от первых экземпляров. Электрические моторы стали намного мощнее, компактнее, но самое главное — их КПД значительно увеличился. Мы уже писали выше о том, какой КПД электродвигателя, и по сравнению с двигателем внутреннего сгорания это потрясающий результат. К примеру, максимальный КПД двигателя внутреннего сгорания достигает 45%.

Высокий КПД — это главное достоинство подобного мотора. И если двигатель внутреннего сгорания тратит более 50% энергии на нагрев, то в электрическом моторе на нагрев уходит небольшая часть энергии.

Вторым преимуществом является небольшой вес и компактные размеры. Например, компания Yasa Motors создала мотор с весом всего 25 кг. Он способен выдавать 650 Нм, что очень приличный результат. Также такие моторы долговечные, не нуждаются в коробке передач. Многие владельцы электрокаров говорят об экономичности электрических двигателей, что логично в некоторой степени. Ведь при работе электромотор не выделяет никаких продуктов сгорания. Однако многие водители забывают о том, что для производства электроэнергии необходимо использовать уголь, газ или обогащенный уран. Все эти элементы загрязняют окружающую среду, поэтому экологичность электродвигателей — это очень спорный вопрос. Да, они не загрязняют воздух в процессе работы. За них это делают электростанции при производстве электроэнергии.

Электрические двигатели обладают некоторыми недостатками, которые плохо влияют на эффективность работы. Это слабый пусковой момент, высокий пусковой ток и несогласованность механического момента вала с механической нагрузкой. Это приводит к тому, что КПД устройства снижается.

Для повышения эффективности стараются обеспечить нагрузку двигателя до 75% и выше и увеличивать коэффициенты мощности. Также есть специальные приборы для регулирования частоты подаваемого тока и напряжения, что тоже приводит к повышению эффективности и росту КПД.

Одним из самых популярных приборов для увеличения КПД электродвигателя является устройство плавного пуска, которое ограничивает скорость роста пускового тока. Также уместно использовать и частотные преобразователи для изменения скорости вращения мотора путем изменения частоты напряжения. Это приводит к снижению расхода электроэнергии и обеспечивает плавный пуск двигателя, высокую точность регулировки. Также увеличивается пусковой момент, а при переменной нагрузке стабилизируется скорость вращения. В результате эффективность электродвигателя повышается.

В зависимости от типа конструкции, коэффициент полезного действия в электрических двигателях может варьироваться от 10 до 99%. Все зависит от того, какой именно это будет двигатель. Например, КПД электродвигателя насоса поршневого типа составляет 70-90%. Конечный результат зависит от производителя, строения устройства и т. д. То же самое можно сказать и про КПД электродвигателя подъемного крана. Если он равен 90%, то это значит, что 90% потребляемой электроэнергии пойдет на выполнение механической работы, остальные 10% — на нагрев деталей. Все же есть наиболее удачные модели электродвигателей, коэффициент полезного действия которых приближается к 100%, но не равен этому значению.

Ни для кого не секрет, что электрические двигатели, КПД которых превышает 100%, не могут существовать в природе, так как это противоречит основному закону о сохранении энергии. Дело в том, что энергия не может взяться из ниоткуда и точно так же исчезнуть. Любой двигатель нуждается в источнике энергии: бензине, электричестве. Однако бензин не вечен, как и электроэнергия, ведь их запасы приходится пополнять. Но если бы существовал источник энергии, который не нуждался в пополнении, то вполне возможно было бы создать мотор с КПД свыше 100%. Российский изобретать Владимир Чернышов показал описание двигателя, который основан на постоянном магните, и его КПД, как уверяет сам изобретатель, составляет более 100%.

Для примера возьмем гидроэлектростанцию, где энергия вырабатывается за счет падения с большой высоты воды. Вода вращает турбину, и та производит электричество. Падение воды осуществляется под действием гравитации Земли. И хотя работа по производству электроэнергии совершается, гравитация Земли не становится слабее, то есть сила притяжения не уменьшается. Далее вода под действием солнечных лучей испаряется и снова поступает в водохранилище. На этом цикл завершается. В результате электроэнергия выработана, затраты на ее производство возобновлены.

Конечно, можно сказать, что Солнце не вечно, это так, но пару-тройку миллиардов лет оно протянет. Что касается гравитации, то она постоянно совершает работу, вытягивая влагу из атмосферы. Если сильно обобщить, то гидроэлектростанция — это двигатель, который преобразует механическую энергию в электрическую, и его КПД составляет более 100%. Это дает понять, что искать пути создания электродвигателя, КПД которого может быть более 100%, прекращать не стоит. Ведь не только гравитацию можно использовать в качестве неисчерпаемого источника энергии.

Второй интересный источник — постоянный магнит, который ниоткуда не получает энергию, а магнитное поле не расходуется даже при совершении работы. Например, если магнит что-либо притянет к себе, то он выполнит работу, а его магнитное поле слабее не станет. Это свойство уже не раз пытались использовать для создания так называемого вечного двигателя, но пока что ничего более-менее нормального из этого не получилось. Любой механизм износится рано или поздно, но сам источник, которым является постоянный магнит, практически вечен.

Впрочем, есть специалисты, которые утверждают, что со временем постоянные магниты теряют свои силы в результате старения. Это неправда, но даже если бы и было правдой, то вернуть его к жизни можно было бы всего лишь одним электромагнитным импульсом. Двигатель, который бы требовал перезарядку раз в 10-20 лет, хоть и не может претендовать на роль вечного, но очень близко к этому подходит.

Уже было много попыток создать вечный двигатель на базе постоянных магнитов. Пока что не было удачных решений, к сожалению. Но учитывая тот факт, что спрос на такие двигатели есть (его просто не может не быть), вполне возможно, что в скором будущем мы увидим что-то, что очень близко подойдет к модели вечного мотора, который будет работать на возобновляемой энергии.

КПД электродвигателя — это самый важный параметр, который определяет эффективность работы того или иного мотора. Чем выше КПД, тем лучше мотор. В двигателе с КПД 95% почти вся затрачиваемая энергия уходит на выполнение работы и только 5% расходуется не по нужде (например, на нагрев запчастей). Современные дизельные двигатели могут достигать значения КПД 45%, и это считается классным результатом. КПД бензиновых двигателей и того меньше.

источник

КПД двигателя равен отношению полезной (механической) мощности Р2 к затраченной (электрической) Р1:

Здесь Р2 в кВт; М – вращающий момент двигателя, Нм; n – частота вращения, об/мин.

.

Зависимости называютсярабочими характеристиками двигателя. Графически они представлены на рис. 2.4.

Рис. 2.3. Кривая зависимости n=f(Iя) при М=const, U=const

Рис. 2.4. Рабочие характеристики двигателя

Методика проведения лабораторной работы (лаборатория № 221)

Ознакомиться на демонстрационном стенде «Машины постоянного тока» с устройством электродвигателя, а на лабораторном стенде – с приборами, аппаратами и подлежащим испытанию электродвигателем. Записать в отчёт о лабораторной работе технические паспортные данные двигателя.

На рабочей панели стенда «Двигатели постоянного тока» в соответствии с принципиальной схемой (см. рис. 2.5) собрать электрическую цепь для снятия характеристик электродвигателя постоянного тока параллельного возбуждения. Монтаж электрической цепи производить согласно монтажной схеме, указанной на рис. 2.6. В качестве нагрузки на валу испытуемого электродвигателя используется электромагнитный тормоз, тормозной момент которого изменяется при изменении тока в его обмотках возбуждения с помощью регулируемого источника постоянного напряжения. Управление тормозом производится рукояткой «Момент нагрузки электродвигателей», расположенной на панели «Нагрузочные устройства».

Изменение момента на валу и частоты вращения якоря электродвигателя производить измерительными приборами (агрегат 2), расположенными на приборной панели.

Перед пуском исследуемого электродвигателя необходимо убедиться в том, что:

а) сопротивление пускового реостата полностью введено (ручка пускового реостата находится в крайнем левом положении – цепь якоря двигателя разомкнута;

б) сопротивление реостата в цепи обмотки возбуждения электродвигателя полностью выведено (ручка реостата «Регулировка возбуждения» находится в крайнем правом положении);

в) напряжение, подводимое к цепи обмотки возбуждения электромагнитного тормоза, равно нулю (ручка «Момент нагрузки электродвигателя» находится в крайнем левом положении);

Читайте также:  Полезная выпечка для здоровья

Рис. 2.5. Принципиальная электрическая схема лабораторной установки

г) значение питающего напряжения электродвигателя установлено равным номинальному его значению Uном=220 В. Установка питающего напряжения производится кнопками «» и «» панели «Нагрузочные устройства» при предварительно нажатой кнопки «Вкл» на панели «Машины постоянного тока»;

д) нажатием кнопки «Агрегат № 2» на панели «Нагрузочные устройства» включено напряжение питания электрической цепи измерения момента и частоты вращения якоря электродвигателя.

Произвести пуск электродвигателя плавным переключением пускового реостата из положения «1» в положение «7» с выдержкой времени в каждом промежуточном положении в течение 1 – 1,5 с. После окончания процесса пуска, когда частота вращения якоря двигателя принимает установившееся значение, пусковой реостат полностью должен быть выведен (рукоятка пускового реостата должна быть в крайнем правом положении – положение «7»).

а) осуществить нагрузку электродвигателя с помощью электромагнитного тормоза; изменение момента электромагнитного тормоза должно производиться плавно; в начале опыта устанавливается ток возбуждения, при котором при номинальном питающем напряжении и токе, потребляемом двигателем, частота вращения якоря равна номинальной; это значение тока возбуждения двигателя принимается равным номинальному; в процессе проведения опыта этот ток необходимо поддерживать неизменным;

б) первые точки характеристик снимаются при холостом ходе электродвигателя, т.е. при уменьшенном до нуля моменте электромагнитного тормоза;

в) постепенно нагружая электродвигатель до значения тока, равного I=1,2Iном, произвести регистрацию показаний всех измерительных приборов для 6–7 точек (включая точку номинального режима). Данные наблюдений записать в табл. 2.1.

Обработка результатов измерений:

а) по результатам измерений п. 4 построить механическую n=f1(М) и частотную n=f2(Iя) характеристики электродвигателя;

б) по результатам измерений и вычислений п.4 построить в одной координатной системе рабочие характеристики двигателя, т.е. зависимости момента М, частоты вращения якоря n, тока якоря Iяи КПД от полезной мощности P2на валу электродвигателя при постоянном номинальном значении напряжения U=Uн=const и постоянном токе возбуждения, равном номинальному его значению.

источник

Энергия, подводимая к механизму в виде работы движущих сил Адв.с. и моментов за цикл установившегося движения, расходуется на совершение полезной работы Ап.с., а также на совершение работы АFтр, связанной с преодолением сил трения в кинематических парах и сил сопротивления среды.

Рассмотрим установившееся движение. Приращение кинетической энергии равно нулю, т.е.

= 0.

При этом работы сил инерции и сил тяжести равны нулю АРи = 0, АG = 0. Тогда для установившегося движения работа движущих сил равна

Следовательно, за полный цикл установившегося движения работа всех движущих сил равна сумме работ сил производственных сопротивлений и непроизводственных сопротивлений (сил трения).

Механический коэффициент полезного действия η (КПД) – отношение работы сил производственных сопротивлений к работе всех движущих сил за время установившегося движения:

η = . (3.61)

Как видно из формулы (3.61), КПД показывает, какая доля механической энергии, приведенной к машине, полезно расходуется на совершение той работы, для которой машина создана.

Отношение работы сил непроизводственных сопротивлений к работе движущих сил называется коэффициентом потерь:

ψ = . (3.62)

Механический коэффициент потерь показывает, какая доля механической энергии, подведенной к машине, превращается в конечном счете в теплоту и бесполезно теряется в окружающем пространстве.

Отсюда имеем связь между КПД и коэффициентом потерь

Из этой формулы вытекает, что ни в одном механизме работа сил непроизводственных сопротивлений не может равняться нулю, поэтому КПД всегда меньше единице (η

Для второго механизма КПД равняется:

И, наконец, для n-го механизма КПД будет иметь вид:

Общий коэффициент полезного действия равен:

Величина общего КПД может быть получена, если перемножить КПД каждого отдельного механизма, а именно:

η1n= η1 η2 η3 …ηn= .

Следовательно, общий механический коэффициент полезного действия последовательно соединенных механизмов равняется произведению механических коэффициентов полезного действия отдельных механизмов, составляющих одну общую систему:

3.2.2.2 Определение КПД при смешанном соединении

На практике соединение механизмов оказывается более сложным. Чаще последовательное соединение сочетается с параллельным. Такое соединение называется смешанным. Рассмотрим пример сложного соединения (рисунок 3.17).

Поток энергии от механизма 2 распределяется по двум направлениям. В свою очередь от механизма 3 ¢¢ поток энергии распределяется также по двум направлениям. Общая работа сил производственных сопротивлений равна:

Общий КПД всей системы будет равен:

Чтобы определить общий КПД, нужно выделить потоки энергии, в которых механизмы соединены последовательно, и рассчитать КПД каждого потока. На рисунке 3.17 показаны сплошной линией I-I, штриховой линией II-II и штрих- пунктирной линией III-III три потока энергии от общего источника.

I I

1 2 3 ¢ n ¢

Адв.с. А1 А ¢ 2 А ¢ 3 … А ¢ n-1 A ¢ n

II А ¢¢ 2 II

А ¢¢ 3 4 ¢¢ А ¢¢ 4 А ¢¢ n-1 n ¢¢ A ¢¢ n

III 3 ¢¢ …

А ¢¢¢ 3 III

А ¢¢¢ 4 5 ¢¢¢ А ¢¢¢ 5 А ¢¢¢ n-1 n ¢¢¢ A ¢¢¢ n

4 ¢¢¢ …

Рисунок 3.17 — Схема смешанного соединения механизмов

КПД каждого потока будет равен:

Выразим работу движущих сил из этих уравнений:

А ¢ дв.с=A ¢ n / η ¢ 1n

Общая работа движущих сил всей системы будет равна сумме

Подставим это выражение в формулу (3.64), получим уравнение коэффициента полезного действия для смешанного соединения

(3.66)

Для параллельно соединенных механизмов методика определения КПД аналогична предыдущему случаю.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 8951 — | 7153 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Электродвигатели появились достаточно давно, но большой интерес к ним возник тогда, когда они стали представлять собой альтернативу двигателям внутреннего сгорания. Особо интересен вопрос КПД электродвигателя, который является одной из главных его характеристик.

Каждая система обладает каким-либо коэффициентом полезного действия, который характеризует эффективность ее работы в целом. То есть он определяет, насколько хорошо система или устройство отдает или преобразовывает энергию. По значению КПД величины не имеет, и чаще всего оно представляется в процентном соотношении или числе от нуля до единицы.

Основная задача электрического двигателя сводится к преобразованию электрической энергии в механическую. КПД определяет эффективность выполнения данной функции. Формула КПД электродвигателя выглядит следующим образом:

В данной формуле p1 — это подведенная электрическая мощность, p2 — полезная механическая мощность, которая вырабатывается непосредственно двигателем. Электрическая мощность определяется формулой: p1=UI (напряжение умноженное на силу тока), а значение механической мощности по формуле P=A/t (отношение работы к единице времени). Так выглядит расчет КПД электродвигателя. Однако это самая простая его часть. В зависимости от предназначения двигателя и сферы его применения, расчет будет отличаться и учитывать многие другие параметры. На самом деле формула КПД электродвигателя включает намного больше переменных. Выше был приведен самый простой пример.

Механический КПД электродвигателя должен обязательно учитываться при выборе мотора. Очень большую роль играют потери, которые связаны с нагревом двигателя, снижением мощности, реактивными токами. Чаще всего падение КПД связано с выделением тепла, которое естественным образом происходит при работе двигателя. Причины выделения теплоты могут быть разными: двигатель может нагреваться в процессе трения, а также по электрическим и даже магнитным причинам. В качестве самого простого примера можно привести ситуацию, когда на электрическую энергию было потрачено 1 000 рублей, а работы было произведено на 700 рублей. В таком случае коэффициент полезного действия будет равен 70%.

Для охлаждения электрических двигателей применяются вентиляторы, которые прогоняют воздух через созданные зазоры. В зависимости от класса двигателей, нагрев может осуществляться до определенной температуры. Например, двигатели класса A могут нагреваться до 85-90 градусов, класса B — до 110 градусов. В том случае, когда температура превышает допустимую границу, это может свидетельствовать о замыкании статора.

Стоит отметить, что КПД электродвигателя постоянного тока (и переменного тоже) изменяется в зависимости от нагрузки:

  1. При холостом ходе КПД равен 0%.
  2. При нагрузке 25% КПД равен 83%.
  3. При нагрузке 50% КПД равен 87%.
  4. При нагрузке 75% КПД равен 88%.
  5. При нагрузке 100% КПД равен 87%.

Одна из причин падения коэффициента полезного действия — асимметрия токов, когда подается разное напряжение на каждой из трех фаз. Если, к примеру, на первой фазе будет напряжение 410 В, на второй — 403 В, а на третьей — 390 В, то среднее значение будет равно 401 В. Асимметрия в данном случае будет равна разнице между максимальным и минимальным напряжением на фазах (410-390), то есть 20 В. Формула КПД электродвигателя для расчета потерь будет иметь вид в нашей ситуации: 20/401*100 = 4.98%. Это значит, что мы теряем 5% КПД при работе из-за разности напряжений на фазах.

Негативных факторов, которые оказывают влияние на падение КПД электродвигателя, очень много. Есть определенные методики, позволяющие их определять. К примеру, можно определить, есть ли зазор, через который частично передается мощность из сети к статору и далее — на ротор.

Потери в стартере также имеют место, и они состоят из нескольких значений. В первую очередь это могут быть потери, имеющие отношение к вихревым токам и перемагничиванию сердечников статора.

Если двигатель асинхронный, то имеют место дополнительные потери из-за зубцов в роторе и статоре. Также в отдельных узлах двигателя могут возникать вихревые токи. Все это в сумме снижает КПД электродвигателя на 0,5%. В асинхронных моторах учитываются все потери, которые могут возникать при работе. Поэтому диапазон коэффициента полезного действия может варьироваться от 80 до 90%.

История развития электрических двигателей начинается с момента открытия закона электромагнитной индукции. Согласно ему, индукционный ток всегда движется таким образом, чтобы противодействовать вызывающей его причине. Именно эта теория легла в основу создания первого электрического двигателя.

Современные модели основаны на этом же принципе, однако кардинально отличаются от первых экземпляров. Электрические моторы стали намного мощнее, компактнее, но самое главное — их КПД значительно увеличился. Мы уже писали выше о том, какой КПД электродвигателя, и по сравнению с двигателем внутреннего сгорания это потрясающий результат. К примеру, максимальный КПД двигателя внутреннего сгорания достигает 45%.

Высокий КПД — это главное достоинство подобного мотора. И если двигатель внутреннего сгорания тратит более 50% энергии на нагрев, то в электрическом моторе на нагрев уходит небольшая часть энергии.

Вторым преимуществом является небольшой вес и компактные размеры. Например, компания Yasa Motors создала мотор с весом всего 25 кг. Он способен выдавать 650 Нм, что очень приличный результат. Также такие моторы долговечные, не нуждаются в коробке передач. Многие владельцы электрокаров говорят об экономичности электрических двигателей, что логично в некоторой степени. Ведь при работе электромотор не выделяет никаких продуктов сгорания. Однако многие водители забывают о том, что для производства электроэнергии необходимо использовать уголь, газ или обогащенный уран. Все эти элементы загрязняют окружающую среду, поэтому экологичность электродвигателей — это очень спорный вопрос. Да, они не загрязняют воздух в процессе работы. За них это делают электростанции при производстве электроэнергии.

Электрические двигатели обладают некоторыми недостатками, которые плохо влияют на эффективность работы. Это слабый пусковой момент, высокий пусковой ток и несогласованность механического момента вала с механической нагрузкой. Это приводит к тому, что КПД устройства снижается.

Для повышения эффективности стараются обеспечить нагрузку двигателя до 75% и выше и увеличивать коэффициенты мощности. Также есть специальные приборы для регулирования частоты подаваемого тока и напряжения, что тоже приводит к повышению эффективности и росту КПД.

Одним из самых популярных приборов для увеличения КПД электродвигателя является устройство плавного пуска, которое ограничивает скорость роста пускового тока. Также уместно использовать и частотные преобразователи для изменения скорости вращения мотора путем изменения частоты напряжения. Это приводит к снижению расхода электроэнергии и обеспечивает плавный пуск двигателя, высокую точность регулировки. Также увеличивается пусковой момент, а при переменной нагрузке стабилизируется скорость вращения. В результате эффективность электродвигателя повышается.

В зависимости от типа конструкции, коэффициент полезного действия в электрических двигателях может варьироваться от 10 до 99%. Все зависит от того, какой именно это будет двигатель. Например, КПД электродвигателя насоса поршневого типа составляет 70-90%. Конечный результат зависит от производителя, строения устройства и т. д. То же самое можно сказать и про КПД электродвигателя подъемного крана. Если он равен 90%, то это значит, что 90% потребляемой электроэнергии пойдет на выполнение механической работы, остальные 10% — на нагрев деталей. Все же есть наиболее удачные модели электродвигателей, коэффициент полезного действия которых приближается к 100%, но не равен этому значению.

Читайте также:  Самый полезный овощ для мужчин

Ни для кого не секрет, что электрические двигатели, КПД которых превышает 100%, не могут существовать в природе, так как это противоречит основному закону о сохранении энергии. Дело в том, что энергия не может взяться из ниоткуда и точно так же исчезнуть. Любой двигатель нуждается в источнике энергии: бензине, электричестве. Однако бензин не вечен, как и электроэнергия, ведь их запасы приходится пополнять. Но если бы существовал источник энергии, который не нуждался в пополнении, то вполне возможно было бы создать мотор с КПД свыше 100%. Российский изобретать Владимир Чернышов показал описание двигателя, который основан на постоянном магните, и его КПД, как уверяет сам изобретатель, составляет более 100%.

Для примера возьмем гидроэлектростанцию, где энергия вырабатывается за счет падения с большой высоты воды. Вода вращает турбину, и та производит электричество. Падение воды осуществляется под действием гравитации Земли. И хотя работа по производству электроэнергии совершается, гравитация Земли не становится слабее, то есть сила притяжения не уменьшается. Далее вода под действием солнечных лучей испаряется и снова поступает в водохранилище. На этом цикл завершается. В результате электроэнергия выработана, затраты на ее производство возобновлены.

Конечно, можно сказать, что Солнце не вечно, это так, но пару-тройку миллиардов лет оно протянет. Что касается гравитации, то она постоянно совершает работу, вытягивая влагу из атмосферы. Если сильно обобщить, то гидроэлектростанция — это двигатель, который преобразует механическую энергию в электрическую, и его КПД составляет более 100%. Это дает понять, что искать пути создания электродвигателя, КПД которого может быть более 100%, прекращать не стоит. Ведь не только гравитацию можно использовать в качестве неисчерпаемого источника энергии.

Второй интересный источник — постоянный магнит, который ниоткуда не получает энергию, а магнитное поле не расходуется даже при совершении работы. Например, если магнит что-либо притянет к себе, то он выполнит работу, а его магнитное поле слабее не станет. Это свойство уже не раз пытались использовать для создания так называемого вечного двигателя, но пока что ничего более-менее нормального из этого не получилось. Любой механизм износится рано или поздно, но сам источник, которым является постоянный магнит, практически вечен.

Впрочем, есть специалисты, которые утверждают, что со временем постоянные магниты теряют свои силы в результате старения. Это неправда, но даже если бы и было правдой, то вернуть его к жизни можно было бы всего лишь одним электромагнитным импульсом. Двигатель, который бы требовал перезарядку раз в 10-20 лет, хоть и не может претендовать на роль вечного, но очень близко к этому подходит.

Уже было много попыток создать вечный двигатель на базе постоянных магнитов. Пока что не было удачных решений, к сожалению. Но учитывая тот факт, что спрос на такие двигатели есть (его просто не может не быть), вполне возможно, что в скором будущем мы увидим что-то, что очень близко подойдет к модели вечного мотора, который будет работать на возобновляемой энергии.

КПД электродвигателя — это самый важный параметр, который определяет эффективность работы того или иного мотора. Чем выше КПД, тем лучше мотор. В двигателе с КПД 95% почти вся затрачиваемая энергия уходит на выполнение работы и только 5% расходуется не по нужде (например, на нагрев запчастей). Современные дизельные двигатели могут достигать значения КПД 45%, и это считается классным результатом. КПД бензиновых двигателей и того меньше.

источник

КПД электропривода как электромеханической системы определяется КПД элементов силового канала, а именно произведением КПД преобразователя г|и, электродвигателя г|д и механической передо Пм.п

В общем случае, когда ЭП работает в некотором цикле с различными скоростями или нагрузками на валу как в установившемся, так и переходном режимах, КПД двигателя определяется как

где Апол, Апотр полезная механическая и потребленная электрическая энергии двигателя, АА — потери энергии, Р . — полезная механическая мощность на /’-м участке цикла; ДР. — потери мощности на /-м участке цикла; п — число участков работы ЭП. Рассчитанный по (9.30) КПД называют цикловым или средневзвешенным. Если ЭП работает в установившемся режиме, то формула (9.30) упрощается и принимает вид

Закономерность изменения номинального К11Д двигателей в зависимости от их номинальной мощности Р иллюстрирует рис. 9.3, я. С ростом уровня номинальной мощности номинальный КПД растет, что объясняется уменьшением потерь мощности относительно полезной мощности двигателя.

КПД работающего двигателя зависит от развиваемой им полезной механической мощности на валу. При малых нагрузках КПД двигателя небольшой (рис. 9.3, б), по мере увеличения нагрузки он растет. Отметим, что своего максимального значения r|max КПД большинства двигателей достигает при нагрузке меньше номинальной.

Существует условие, при котором двигатель будет работать с максимальным КПД при данном коэффициенте нагрузки двигателя кн = Р / Рном, где Рс механическая мощность нагрузки. КПД двигателя г| можно записать следующим образом:

Найдем условие работы двигателя с максимальным КПД при данном коэффициенте нагрузки, взяв производную dp/dкн и приравняв ее нулю. Максимальное значение КПД будет иметь место при оптимальной нагрузке, определяемой следующим соотношением постоянных К и номинальных переменных потерь мощности

Рис. 9.3. Зависимости номинального КПД двигателя от номинальной мощности и скорости вращения (а) и КПД двигателя от коэффициента

Из формулы (9.33) следует, что при К > V максимальный КПД может быть получен при нагрузке двигателя, превышающей номинальную, что неприемлемо. Максимальный КПД к опт при К

Анализируя работу электропривода с конкретным двигателем, можно с помощью соотношения (9.33) определить нагрузку двигателя, при которой он будет работать с наименьшими потерями мощности, т.е. при данной нагрузке с максимальным КПД.

Анализ работы действующих электроприводов показывает, что большинство двигателей имеют завышенную номинальную мощность по сравнению с той, которая требуется от электропривода для реализации заданного технологического процесса. В европейских странах коэффициент нагрузки (коэффициент использования) двигателей кн составляет величину порядка 0,6, а в нашей стране наиболее вероятное значение этого коэффициента лежит в пределах ОД- ОД.

Другая типичная ситуация характеризуется тем, что электроприводы ряда рабочих машин и производственных механизмов часть своего цикла работают с малыми механическими нагрузками или на холостом ходу. К ним относятся, например, электроприводы обрабатывающих станков, кузнечно-прессового оборудования, подъемно-транспортных механизмов.

Исходя из этого можно назвать следующие способы повышения КПД двигателей при их эксплуатации.

    1. Замена малозагруженных двигателей двигателями меньшей мощности. Такая замена целесообразна в тех случаях, когда это приведет к снижению потерь энергии в электроприводе и системе электроснабжения, что позволит окупить капитальные затраты при такой модернизации за приемлемый срок. Расчеты показывают, что при коэффициенте нагрузки к 0,7 — нецелесообразной, а при соотношении 0,4

источник

«Физика — 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели.

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т1 называют температурой нагревателя.

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2, которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника. Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q1, совершает работу А’ и передаёт холодильнику количество теплоты Q2

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т1, при этом он получает количество теплоты Q1.

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т2. После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q2, сжимаясь до объёма V4

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т1 — 800 К и Т2 — 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД — около 44% — имеют двигатели Дизеля.

Читайте также:  Для чего полезно крутить обруч для женщин

Охрана окружающей среды.

Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

источник

Каждая система или устройство обладает определенным коэффициентом полезного действия (КПД). Данный показатель характеризует эффективность их работы по отдаче или преобразованию какого-либо вида энергии. По своему значению КПД является безмерной величиной, представляемой в виде числового значения в пределах от 0 до 1, или в процентном отношении. Эта характеристика в полной мере касается и всех типов электрических двигателей.

Электрические двигатели относятся к категории устройств, выполняющих преобразование электрической энергии в механическую. Коэффициент полезного действия для данных устройств определяет их эффективность в деле выполнения основной функции.

Как найти кпд двигателя? Формула КПД электродвигателя выглядит так: ƞ = Р2/Р1. В этой формуле Р1 является подведенной электрической мощностью, а Р2 – полезной механической мощностью, вырабатываемой двигателем. Значение электрической мощности (Р) определяется формулой Р = UI, а механической – Р = А/t, как отношение работы к единице времени.

Коэффициент полезного действия обязательно учитывается при выборе электродвигателя. Большое значение имеют потери КПД, связанные с реактивными токами, снижением мощности, нагревом двигателя и другими негативными факторами.

Превращение электрической энергии в механическую сопровождается постепенной потерей мощности. Потеря КПД чаще всего связана с выделением тепла, когда происходит нагрев электродвигателя в процессе работы. Причины потерь могут быть магнитными, электрическими и механическими, возникающими под действием силы трения. Поэтому в качестве примера лучше всего подходит ситуация, когда электрической энергии было потреблено на 1000 рублей, а полезной работы произведено всего лишь на 700-800 рублей. Таким образом, коэффициент полезного действия в данном случае составит 70-80%, а вся разница превращается в тепловую энергию, которая и нагревает двигатель.

Для охлаждения электродвигателей используются вентиляторы, прогоняющие воздух через специальные зазоры. В соответствии с установленными нормами, двигатели А-класса могут нагреваться до 85-90 0 С, В-класса – до 110 0 С. Если температура двигателя превышает установленные нормы, это свидетельствует о возможном скором межвитковом замыкании статора.

В зависимости от нагрузки КПД электродвигателя может изменять свое значение:

  • Для холостого хода – 0;
  • При 25% нагрузке – 0,83;
  • При 50% нагрузке – 0,87;
  • При 75% нагрузке – 0,88;
  • При полной 100% нагрузке КПД составляет 0,87.

Одной из причин снижения КПД электродвигателя может стать асимметрия токов, когда на каждой из трех фаз появляется разное напряжение. Например, если в 1-й фазе имеется 410 В, во 2-й – 402 В, в 3-й – 288 В, то среднее значение напряжения составит (410+402+388)/3 = 400 В. Асимметрия напряжения будет иметь значение: 410 – 388 = 22 вольта. Таким образом, потери КПД по этой причине составят 22/400 х 100 = 5%.

Существует множество негативных факторов, под влиянием которых складывается количество общих потерь в электрических двигателях. Существуют специальные методики, позволяющие заранее их определить. Например, можно определить наличие зазора, через который мощность частично подается из сети к статору, и далее – на ротор.

Потери мощности, возникающие в самом стартере, состоят из нескольких слагаемых. В первую очередь, это потери, связанные с вихревыми токами и частичным перемагничиванием сердечника статора. Стальные элементы оказывают незначительное влияние и практически не принимаются в расчет. Это связано со скоростью вращения статора, которая значительно превышает скорость магнитного потока. В этом случае ротор должен вращаться в строгом соответствии с заявленными техническими характеристиками.

Значение механической мощности вала ротора ниже, чем электромагнитная мощность. Разница составляет количество потерь, возникающих в обмотке. К механическим потерям относятся трения в подшипниках и щетках, а также действие воздушной преграды на вращающиеся части.

Для асинхронных электродвигателей характерно наличие дополнительных потерь из-за наличия зубцов в статоре и роторе. Кроме того, в отдельных узлах двигателя возможно появление вихревых потоков. Все эти факторы в совокупности снижают КПД примерно на 0,5% от номинальной мощности агрегата.

При расчете возможных потерь используется и формула КПД двигателя, позволяющая вычислить уменьшение этого параметра. Прежде всего учитываются суммарные потери мощности, которые напрямую связаны с нагрузкой двигателя. С возрастанием нагрузки, пропорционально увеличиваются потери и снижается коэффициент полезного действия.

В конструкциях асинхронных электродвигателей учитываются все возможные потери при наличии максимальных нагрузок. Поэтому диапазон КПД этих устройств достаточно широкий и составляет от 80 до 90%. В двигателях повышенной мощности этот показатель может доходить до 90-96%.

источник

Электрические двигатели имеют высокий коэффициент полезного действия (КПД), но все же он далек от идеальных показателей, к которым продолжают стремиться конструкторы. Все дело в том, что при работе силового агрегата преобразование одного вида энергии в другой проходит с выделение теплоты и неминуемыми потерями. Рассеивание тепловой энергии можно зафиксировать в разных узлах двигателя любого типа. Потери мощности в электродвигателях являются следствием локальных потерь в обмотке, в стальных деталях и при механической работе. Вносят свой вклад, пусть и незначительный, дополнительные потери.

Магнитные потери мощности

При перемагничивании в магнитном поле сердечника якоря электродвигателя происходят магнитные потери. Их величина, состоящая из суммарных потерь вихревых токов и тех, что возникают при перемагничивании, зависят от частоты перемагничивания, значений магнитной индукции спинки и зубцов якоря. Немалую роль играет толщина листов используемой электротехнической стали, качество ее изоляции.

Механические и электрические потери

Механические потери при работе электродвигателя, как и магнитные, относятся к числу постоянных. Они складываются из потерь на трение подшипников, на трение щеток, на вентиляцию двигателя. Минимизировать механические потери позволяет использование современных материалов, эксплуатационные характеристики которых совершенствуются из года в год. В отличие от них электрические потери не являются постоянными и зависят от уровня нагрузки электродвигателя. Чаще всего они возникают вследствие нагрева щеток, щеточного контакта. Падает коэффициент полезного действия (КПД) от потерь в обмотке якоря и цепи возбуждения. Механические и электрические потери вносят основной вклад в изменение эффективности работы двигателя.

Добавочные потери мощности в электродвигателях складываются из потерь, возникающих в уравнительных соединениях, из потерь из-за неравномерной индукции в стали якоря при высокой нагрузке. Вносят свой вклад в общую сумму добавочных потерь вихревые токи, а также потери в полюсных наконечниках. Точно определить все эти значения довольно сложно, поэтому их сумму принимают обычно равной в пределах 0,5-1%. Эти цифры используют при расчете общих потерь для определения КПД электродвигателя.

КПД и его зависимость от нагрузки

Коэффициент полезного действия (КПД) электрического двигателя это отношение полезной мощности силового агрегата к мощности потребляемой. Этот показатель у двигателей, мощностью до 100 кВт находится в пределах от 0,75 до 0,9. для более мощных силовых агрегатов КПД существенно выше: 0,9-0,97. Определив суммарные потери мощности в электродвигателях можно достаточно точно вычислить коэффициент полезного действия любого силового агрегата. Этот метод определения КПД называется косвенным и он может применяться для машин различной мощности. Для маломощных силовых агрегатов часто используют метод непосредственной нагрузки, заключающийся в измерениях потребляемой двигателем мощности.

КПД электрического двигателя не является величиной постоянной, своего максимума он достигает при нагрузках около 80% мощности. Достигает он пикового значения быстро и уверенно, но после своего максимума начинает медленно уменьшаться. Это связывают с возрастанием электрических потерь при нагрузках, более 80% от номинальной мощности. Падение коэффициента полезного действия не велико, что позволяет говорить о высоких показателях эффективности электродвигателей в широком диапазоне мощностей.

источник

коэффициент полезного действия — Отношение отдаваемой мощности к потребляемой активной мощности. [ОСТ 45.55 99] коэффициент полезного действия КПД Величина, характеризующая совершенство процессов превращения, преобразования или передачи энергии, являющаяся отношением полезной… … Справочник технического переводчика

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — или коэффициент отдачи (Efficiency) характеристика качества работы любой машины или аппарата со стороны ее экономичности. Под К. П. Д. подразумевается отношение количества полученной от машины работы или энергии от аппарата к тому количеству… … Морской словарь

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — (к.п.д.), показатель эффективности действия механизма, определяемый как отношение работы, совершаемой механизмом, к работе, затраченной на его функционирование. К.п.д. обычно выражают в процентах. Идеальный механизм должен был бы иметь к.п.д =… … Научно-технический энциклопедический словарь

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — (кпд), числовая характеристика энергетической эффективности какого либо устройства или машины (в том числе тепловой машины). Кпд определяется отношением полезно использованной энергии (т.е. превращенной в работу) к суммарному количеству энергии,… … Современная энциклопедия

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — (кпд) характеристика эффективности системы (устройства, машины) в отношении преобразования энергии; определяется отношением полезно использованной энергии (превращенной в работу при циклическом процессе) к суммарному количеству энергии,… … Большой Энциклопедический словарь

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — (кпд), характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением т) полезно использованной энергии (Wпол) к суммарному кол ву энергии (Wсум), полученному системой; h=Wпол… … Физическая энциклопедия

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — (кпд) отношение полезно используемой энергии W п, напр. в виде работы, к общему кол ву энергии W, получаемой системой (машиной или двигателем), W п/W. Из за неизбежных потерь энергии на трение и др. неравновесные процессы для реальных систем… … Физическая энциклопедия

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — отношение полезно затрачиваемой работы или получаемой энергии ко всей затраченной работе или соответственно потребляемой энергии. Напр., К. п. д. электродвигателя отношение механ. мощности, им отдаваемой, к подводимой к нему электр. мощности; К.… … Технический железнодорожный словарь

коэффициент полезного действия — сущ., кол во синонимов: 8 • кпд (4) • отдача (27) • плодотворность (10) • … Словарь синонимов

Коэффициент полезного действия — – величина, характеризующая совершенство любой системы по отношению к какому либо протекающему в ней процессу превращения или передачи энергии, определяемая как отношение полезной работы, к работе, затраченной на приведение в действие.… … Энциклопедия терминов, определений и пояснений строительных материалов

Коэффициент полезного действия — (кпд), числовая характеристика энергетической эффективности какого либо устройства или машины (в том числе тепловой машины). Кпд определяется отношением полезно использованной энергии (т.е. превращенной в работу) к суммарному количеству энергии,… … Иллюстрированный энциклопедический словарь

источник

Источники:
  • http://studfiles.net/preview/1970965/page:4/
  • http://studopedia.ru/18_30799_mehanicheskiy-koeffitsient-poleznogo-deystviya-kpd.html
  • http://fb.ru/article/335749/kakoy-kpd-elektrodvigatelya-kak-povyisit-effektivnost-elektrodvigatelya
  • http://studref.com/359289/tehnika/koeffitsient_poleznogo_deystviya_elektroprivoda
  • http://class-fizika.ru/10_a189.html
  • http://electric-220.ru/news/formula_kpd_ehlektrodvigatelja/2016-10-19-1090
  • http://cable.ru/articles/id-1085.php
  • http://dic.academic.ru/dic.nsf/ruwiki/20510