Меню Рубрики

Какие полезные ископаемые являются горючими

Так не похожие друг на друга железная руда и нефть, мрамор и природный газ на самом деле объединены общим названием «полезные ископаемые». Ископаемые — потому что извлекаются из недр Земли, а полезные — так как служат человеку, то есть по его воле превращаются в разнообразные необходимые предметы, которые создают уют, обеспечивают безопасность, обогревают, кормят. Все они необходимы для обеспечения комфортной жизни людей.

Недра нашей планеты таят огромные запасы полезных ископаемых. Часть из них залегает около поверхности Земли, другие же — на большой глубине, под толщей «пустой» породы.

По физическому состоянию полезные ископаемые делятся на:

  • твердые — различные руды, уголь, каменная соль и др.;
  • жидкие — нефть, минеральные воды;
  • газообразные — горючий газ.

По особенностям использования различают три группы:

  • горючие — уголь, торф, горючие сланцы, нефть, природный газ;
  • металлические — руды черных, цветных, редких, благородных и радиоактивных металлов;
  • неметаллические полезные ископаемые — различные соли, известняк, глина, песок, камни и т. д.

Металлические полезные ископаемые служат для извлечения из них металлов. К неметаллическим полезным ископаемым относятся строительные материалы, рудоминеральное неметаллическое сырье — слюды, графит, алмазы и химическое минеральное сырье — калийные соли, фосфаты, сера.

Месторождение — это скопление полезных ископаемых. Группы близко расположенных месторождений одного и того же полезного ископаемого называют «бассейна».

Особую группу полезных ископаемых образуют различные виды топлива. Это торф, уголь, горючие сланцы, нефть и горючие газы. Они содержат углерод и, соединяясь с кислородом при горении, выделяют тепло.

Горючие ископаемые используются не только как топливо. Они служат незаменимым сырьем для производства различных изделий. Угли, горючие сланцы, нефть и газ используют при выпуске пластмасс, синтетических тканей, взрывчатых веществ, лекарств, красок, технических масел, мыла и другой продукции.

Нефть — горючая маслянистая жидкость темного цвета. Ее добывают в основном с помощью бурения скважин на суше, а также на дне морей и океанов. Нефть — это «сгусток энергии». Используя всего лишь 1 мл этого вещества, можно нагреть на 1 °С целое ведро воды.

Природный газ, так же как нефть и уголь, образовался в земных недрах из органических веществ растительного и животного происхождения под действием высоких давлений и температур.

Природный газ является отличным топливом и обладает многими положительными свойствами — высокой теплотворной способностью, хорошей транспортабельностью, большей по сравнению с нефтью и углем экологичностью. Природный газ — самое чистое органическое топливо. При сгорании он образует намного меньше вредных веществ, чем уголь и нефть, поэтому и используется очень широко. По газопроводам топливо перекачивают на многие тысячи километров. Более того, разведанные запасы газа больше, чем разведанные запасы нефти.

Уголь является одним из наиболее важных полезных ископаемых. Он используется в качестве твердого топлива, выделяя при горении много тепла. Кроме того, из него получают краски, пластмассы и другие ценные материалы.

Уголь образовался из погибших растений. Прожив свой век, деревья и другие растения отмирали, падали, заносились илом и песком, спрессовывались, а затем происходило их обугливание. Начинался этот процесс в присутствии кислорода, а продолжался в бескислородной среде. При этом остатки растений теряли кислород, водород, азот, а углерод сохранялся. Так образовались торф и уголь.

Уголь состоит из углерода, водорода, кислорода, азота и других второстепенных компонентов. По содержанию углеводорода угли подразделяются на бурые (65—70 % углерода), каменные (порядка 80 % углерода), антрациты (до 96 % углерода).

Каменный уголь залегает в земле пластами толщиной до 100 м. Его добычу ведут открытым или закрытым способами. Открытый способ добычи применяют на тех месторождениях угля, где он залегает близко к поверхности земли. Угольные пласты взрывают, а затем куски угля экскаваторами грузят в огромные грузовики или железнодорожные вагоны. При закрытом способе строят шахты, представляющие собой глубокие вертикальные колодцы с горизонтальными туннелями. В них трудятся шахтеры, которые с помощью мощных специальных комбайнов дробят большие пласты каменного угля и подают его наверх.

источник

Без горючих полезных ископаемых — нефти, природного газа, угля, торфа — нет энергетики. Для любой страны они являются стратегическим сырьём. Их добыча ведётся с незапамятных времён.

Ископаемый уголь. Каменный уголь — ровесник древних геологических эпох Земли. Один из периодов геохронологической шкалы в его честь назван каменноугольным, или карбоном. Именно тогда, около 354—286 млн лет назад, поверхность суши покрывали густые тропические леса, состоящие из гигантских древовидных папоротников и хвощей.

Климат той эпохи был тёплым и влажным. Старые падающие деревья уступали место новым. Громадные слои из отживших деревьев накапливались в мелководных водоёмах, превращаясь в мощные пласты каменного угля — прим. от geoglobus.ru. Таким путём образовалось более 30% всех мировых запасов угля.

На нашей планете месторождения ископаемого угля — не редкость, они находятся на каждом континенте и многих островах. Не исключение и Антарктида: предполагают, что под огромными толщами покровных ледников залегают такие же месторождения, как и в Европе.

Горючие свойства угля были известны ещё нашим далёким предкам. «Горючие камни» медленно раскалялись в огне, но зато затем очень долго отдавали тепло. В зависимости от условий образования ископаемый уголь различен. Самый высококачественный и плотный уголь — антрацит, менее плотный — бурый уголь, а совсем «рыхлый» и лёгкий — торф. Последние менее ценны в энергетическом плане, но быстрее воспламеняются — прим. от geoglobus.ru. Ископаемый уголь используют как топливо для доменных печей при производстве чугуна и стали.

Нефть и газ. Скопление нефти и газа возникают благодаря наличию природных «ловушек» в недрах Земли — слоев проницаемых осадочных пород между слоями непроницаемых. В них накапливается маслянистая горючая жидкость, которая поднимается из глубин по трещинам. Горючие свойства нефти связаны с её составом — это смесь углеводородов, серы, кислородных и азотистых соединений. Нефть сопровождают природные газы, которые, как более легкие, залегают над нефтяной линзой.

Богатейшие страны мира обладают самыми значительными запасами нефти — прим. от geoglobus.ru. Некоторые страны, например США, имеют огромные разведанные запасы нефти, но не используют их в полном объёме, предпочитая сберечь «чёрное золото» законсервированным для будущего.

Самые богатые месторождения находятся в Кувейте, Саудовской Аравии, России, Азербайджане, Канаде, США, Мексике, Индонезии. В России одним из самых богатых месторождений нефти является Самотлорское в Западной Сибири, там же расположены крупнейшие газовые месторождения, среди которых Бованенковское, Уренгойское и Ямбургское в Тюменской области.

Добыча нефти ведется не только на суше, но и на шельфе многих морей с помощью буровых установок на плавучих платформах. Большое количество нефти добывается на шельфах Северного моря и в Мексиканском заливе.

Энергетика и химическое производство — далеко не полный список применения нефти.

Горючий сланец — полезное ископаемое из группы твёрдых каустобиолитов, дающее при сухой перегонке значительное количество смолы (близкой по составу к нефти). Сланцы в основном образовались 450 миллионов лет тому назад на дне моря из растительных и животных остатков. Горючий сланец состоит из преобладающих минеральных и органических частей (кероген), последняя составляет 10—30 % от массы породы и только в сланцах самого высокого качества достигает 50—70 %. Органическая часть является био и геохимически преобразованным веществом простейших водорослей, сохранившим клеточное строение (талломоальгинит) или потерявшим его; в виде примеси в органической части присутствуют измененные остатки высших растений. Общие потенциальные ресурсы горючих сланцев в мире оценены в 650 трлн т (26 трлн т сланцевой смолы). Основные ресурсы — около 430—450 трлн т (24-25 трлн т сланцевой смолы) сосредоточены в США (штаты Колорадо, Юта, Вайоминг) и связаны с формацией Грин-Ривер. Большие запасы горючих сланцев есть в Бразилии, КНР, меньшие — в Болгарии, Украине,Великобритании, России, ФРГ, Франции, Испании, Австрии, Канаде, Австралии, Италии, Швеции, на территории бывшей Югославии.

Торф (нем. Torf) — горючее полезное ископаемое; образовано скоплением остатков растений, подвергшихся неполному разложению в условиях болот. Содержит 50—60 % углерода. Теплота сгорания (максимальная) 24 МДж/кг. Используется комплексно как топливо, удобрение, теплоизоляционный материал и так далее. Для болота характерно отложение на поверхности почвы неполно разложившегося органического вещества, превращающегося в дальнейшем в торф. Слой торфа в болотах не менее 30 см, (если меньше, то это заболоченные земли). По разным оценкам в мире от 250 до 500 млрд т. торфа (в пересчете на 40 % влажность), он покрывает около 3 % площади суши. При этом в северном полушарии торфа больше чем в южном, заторфованность растёт при движении к северу и при этом возрастает доля верховых торфяников (см. раздел Классификация). Достаточные запасы торфа имеются на Украине (месторождение Морочно-1). Также большие запасы торфа имеются в Индонезии, Канаде, Белоруссии, Ирландии, Великобритании, ряде штатов США. На первом в мире месте по запасам торфа (170 млрд т) — Канада, на втором — Россия (150 млрд т).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10037 — | 7155 — или читать все.

источник

КОКСУЮЩИЕСЯ УГЛИ — каменные уг­ли средний стадий углефикации, из которых в условиях промышленного коксования в сме­сях (шихтах) с другими углями или без смешивания получают кусковой КОКС определённой крупности и прочности. Коксующиеся угли, в отличие от других каменных углей, при нагревании без доступа воздуха переходят в пластическое состояние и спе­каются. Коксующиеся угли характеризуются в необо­гащённом виде или в концентратах зольностью менее 10% и низким со­держанием S (менее 3,5%), выход ле­тучих веществ (V а ) 15—37%. По спо­собности к коксообразованию коксующиеся угли подразделяются на 5 категорий — коксовые, жирные, отощёиные коксо­вые, газовые и слабоспекающиеся. В России отнесение углей к группе коксующихся углей прежде всего базируется на их при­годности для производства кондиционного доменного кокса. В действующих в России классификациях к коксующимся углям относят угли марок Г, ГЖ, Ж, КЖ, К, К2, ОС и СС с подразделением на технологические группы по СПЕКАЕМОСТИ. Коксовые угли марок К (коксовые) и КЖ (коксово-жирные) дают кондиционный домен­ный кокс без смешивания с другими углями. Жирные угли марок Ж (жирные) и ГЖ (газово-жирные) без смешивания с другими дают хорошо сплавленный, но более мелко дробящийся кокс с физико-механическими характеристиками, ниже принятых для доменного кокса. Домен­ный кокс из жирных углей может быть легко получен в бинарных смесях с коксовыми или отощёнными коксовы­ми углями. Отощённые коксо­вые угли марок К2 (коксовые вто­рые) и ОС (отощённо-спекающиеся) без смешивания с жирными дают кокс повышенной истираемости с физико-механиескими. характеристиками, не соот­ветствующими доменному коксу. Додленный кокс из отощённых коксовых углей получается в бинарных смесях с жирными. Газовые угли марки Г (газовые) без смешивания с другими дают кокс достаточно сплавленный, но легко разделяющийся на мелкие и хрупкие куски, характеризующиеся малой механической прочностью. Газовые угли для получения доменного кокса в современных коксовых печах при обычной технологии подготовки шихты могут применяться только в смесях с хорошо коксующимися углями. Слабоспе-кающиеся угли марки СС (слабо-спекающиеся) без смешивания с дру­гими не дают кускового кокса. Домен­ный кокс может быть получен из них только в смесях с жирными углями (не менее 70—85% жирных углей). дленный кокс из отощённых коксовых углей получается в бинарных смесях с жирными. Газовые угли марки Г (газовые) без смешивания с другими дают кокс достаточно сплавленный, но легко разделяющийся на мелкие и хрупкие куски, характеризующиеся малой механич. прочностью. Газовые угли для получения доменного кокса в совр. коксовых печах при обычной технологии подготовки шихты могут применяться только в смесях с хорошо коксующимися углями. Слабоспе-кающиеся угли марки СС (слабо-спекающиеся) без смешивания с дру­гими не дают кускового кокса. Домен­ный кокс может быть получен из них только в смесях с жирными углями (не менее 70—85% жирных углей). Коксующиеся угли известны в угленосных форма­циях от карбона до палеогена вклю­чительно, однако свыше 90% их запасов сконцентрировано в бассейнах и месторождениях карбона и перми. Значительными, запасами коксующегося угля располагают Россия (Донецкий, Печорский, Кизеловский, Кузнецкий, Карагандинский, Юж.-Якутский, Тун­гусский и др. басе), США (Аппалач-ский, Западный, Юинта, Грин-Ривер и др.), Великобритания (Нортамбер-лендский, Юж.-Уэльский, Ланкашир­ский и Йоркширский басе), ФРГ (Нижнерейнско-Вестфальский, или Рур­ский, Нижневестфальский), ПНР (Верх­не- и Нижнесилезский, Люблинский), Бельгия (Льежский), Индия (Бокаро, Ранигандж, Джхария), Канада (Аль­берта), Австралия (Боуэн, Новый Юж. Уэльс), КНР (Шаньси, Датун), МНР (Тавантолгой), ЧССР (Остравско-Кар-винский и Трутновский); ограниченные по запасам м-ния известны также во Франции (Саарско-Лотарингский, Нор и Па-де-Кале, Аквитанский басе), в Испании (Астурийский и Юж.-Кантаб-рийский басе), Венгрии, Румынии, Югославии, Турции, Японии, Иране, Афганистане, Мексике, Бразилии, Ар­гентине. Коксующиеся угли выявлены также в ЮАР (Витбанк), Зимбабве (Саби), Мозамби­ке. В перечисленных бассейнах К. у. составляют 10—65% общих запасов углей и разрабатываются наиболее интенсивно.

ТОРФ — горючее полезное ископаемое растительного происхождения, предшествен­ник генетического ряда углей. Образуется в результате естественного отмирания и непол­ного распада болотных растений под воздействием биохимических процессов в условиях повышенной влажности и не­достатка кислорода. Залегает на повер­хности Земли или на глубине первых десятков м под покровом минеральных отложений. От почвенных обра­зований торф отличается по содержанию в нём органических соединений (не менее 50% по отношению к абсолютно сухой массе), от БУРОГО УГЛЯ — повышен­ным содержанием влаги и форменных растительных остатков, а в химическом отношении — наличием сахаров, гемицеллюлоз и целлюлозы.

Состав и свойства торфов. Состоит из не полностью разложившихся остатков растений, продуктов их распада (гуму­са) и минеральных частиц; в естественном состоянии содержит 86—95% воды.

Растительные остатки и гумус содержат органическую и минеральную части, послед­няя определяет зольность торфов. Перегной (гумус) придаёт торфу тёмную окраску. Относительное содержание в торфе бесструктур­ной (аморфной) массы, включающей гуминовые вещества и мелкие раститительные ткани, утратившие клеточное строение, определяет степень разложения. Раз­личают торфы слаборазложившийся (до 20%), среднеразложившийся (20— 35%) и сильноразложившийся (св. 35%). В ботаническом составе торфов присутству­ют остатки древесины, коры и корней деревьев и кустарников, различные части травянистых растений, а также гипновых и сфагновых мхов. В зависимости от ботанического состава, условий образова­ния и свойств выделяют 3 типа торфов (ВЕРХОВОЙ ТОРФ, ПЕРЕХОДНЫЙ ТОРФ, НИЗИННЫЙ ТОРФ).

Химический состав и свойства торфов тесно связа­ны с его типом, ботаническим составом и степенью разложения. Элементный состав (% на органич. массу): С 48—65, О 25—45, Н 4,7—7, N 0,6— 3,8, S до 1,2, реже до 2,5. В ком­понентном составе органической массы содержание битумов (бензольных) 1,2—17 (максимум у верховых торфов высокой степени разложения), водо­растворимых и легкогидролизуемых веществ 10—60 (максимум у верхо­вых торфов моховой группы), целлюлозы 2—10, гуминовых кислот 10—50 (минимум у слаборазложившихся верховых и максимум у сильноразло-

жившихся Т. всех типов), лигнина (негидролизуемый остаток) 3—20. Содержание макро- и микроэлементов в Т. зависит от зольности и ботанического состава. Содержание в торфах оксидов до­стигает (ср. %): Si и Са— 5, AI и Fe 0,2—1,6, Mg 0,1—0,7, Р 0,05—0,14; микроэлементов (мг/кг): Zn до 250, Си 0,2—85, Со и Мо 0,1—10, Мп 2— 1000. Макс, содержание этих элемен­тов выявлено в Т. низинного типа. Со­держание общего азота в органической массе торфа варьирует от 0,6 до 2,5% (верховой тип) и от 1,3 до 3,8% (ни­зинный тип).

Торф — сложная полидисперсная много­компонентная система; его физические свой­ства зависят от состава твёрдой фазы, степени её разложения или дисперс­ности и степени увлажнённости. В зависимости от типа и степени разложения цвет торфы варьирует от светло-жёлтого до тёмно-коричневого (верховой) и от серо-ко­ричневого до землисто-чёрного (ни­зинный). Структура верховых торфов изме­няется от губчатой (моховой торф), губча-товолокнистой до пластично-вязкой (древесный торф), низинных — от войлоч­ной, ленточно-слоистой до зернисто-комковатой. Плотность торфов зависит от влажности, степени разложения, золь­ности, состава минеральной и орга­нической частей, в естественных условиях залежи достигает 800—1080 кг/м 3 ; плотность сухого вещества 1400—1700 кг/м 3 . Влагоёмкость торфов в зависимости от ботанического состава и степени разложе­ния колеблется от 6,4 до 30 кг/кг. максимально у верховых торфов моховой группы. Пористость достигает 96—97%, пре­дельное напряжение на сдвиг умень­шается с ростом влагосодержания и степени разложения торфов от 3 до 35 кПа, при пенетрации (зондировании) до 400 кПа. Средняя теплота сгорания Т. 21— 25 МДж/кг, увеличивается с повы­шением степени разложения и содер­жания битумов. Торфы малой степени разложения имеет низкие значения коэффициента теплопроводности и удельной теплоты сгорания (10—12,5 МДж/кг), высокие значения газопоглотительной спо­собности. Коэффициент фильтрации торфов с не­нарушенной структурой изменяется от 0,1 • 10 -5 до 4,3 • 10 -5 м/с. Минимальное значения у торфов верхового типа высокой степени разложения, максимально — у торфов низинного типа. При осушении коэффициент фильтрации уменьшается в несколько раз.

УГЛИ ИСКОПАЕМЫЕ — твёрдые горючие горные по­роды, образовавшиеся из отмерших растений. Угли ископаемые залегают в виде пластов и прослоев или мощных (десятки, реже первые сотни м) пластообразных и линзовидных залежей в осадочных толщах, выделяемых как УГЛЕНОСНЫЕ ФОР­МАЦИИ. Имеют землистую, массив­ную, слоистую или зернистую тексту­ру, однородную или полосчатую струк­туру; цвет от коричневого до серо-чёр­ного, блеск от матового до металло­видного.

Читайте также:  Конспект урока на тему полезные ископаемые 3 класс

Общие сведения. Угли ископаемые — один из наиболее распространённых видов полезных ископаемых, они выявлены на всех континен­тах земного шара. Известно около 3000 угольных месторождений и бассейнов. Общие ресурсы углей ископаемых мира (1984) оценивают­ся в 14,8 трлн. т в натуральном выра­жении, или в 12 трлн. т условного топлива (тут); разведанные (соответ­ствующие категориям А, В, С) в 1,24 трлн. т (1,02 трлн. тут). Ресурсы углей ископаемых России оцениваются в 5,58 трлн. т., но из них 3,7 трлн. т заклю­чено в слабоизученных и трудных для освоения бассейнах-гигантах — Тунгус­ском, Ленском и Таймырском. Из за­рубежных стран наиболее крупные общие ресурсы углей ископаемых учтены (млрд. т): в США (3600), КНР (1465), Австралии . (783), Канаде (582), ФРГ (287), ЮАР (206), Великобритании (189), Польше (174), Индии (115).

Доля углей ископаемых в мировом энергетическом ба­лансе мира в 1913 была 93%. В связи с более широким использованием в 20 в. других, более эффективных видов энергетических ресурсов (нефть, газ, энергия ГЭС, атомная энергия) она снизилась до 56% в 1950 и до 29% в 1985.

Основное направления современного использова­ния углей ископаемых: энергетическое — производство электроэнергии и тепла (около 73% углей ископаемых, добываемых в России) и технологиче­ское — получение металлургического кокса, химического сырья (более 300 наименований) и др.; в меньших масштабах осуществляются газификация и полукоксова­ние углей. Они используются также для получения карбидов кальция и крем­ния, термоантрацита, термографита, катодных блоков, электродов, углещелочных реагентов, гуминовых кислот и азотистых удобрений и как энерго-технологическое сырьё (для агломерации руд, в производстве строит, материалов и для др. целей). Перспективные направле­ния переработки углей ископаемых — гидрогени­зация и пиролиз угля с целью получе­ния жидкого и газообразного топлива, а также продуктов для органического синте­за, новых видов пластмасс, извлече­ния серы. Значит, масштабы добычи, а также совершенствование методов переработки углей ископаемых — основа комплекс­ного использования недр (в т. ч. сопут­ствующих полезных ископаемых, со­держащихся в отходах добычи и пере­работки и извлекаемых при осушении и дегазации горн, работ подземных вод и метана).

Природные типы, состав и свойства. Угли ископаемые по характеру исходного для УГЛЕ-ОБРАЗОВАНИЯ материала угли ископаемые под­разделяются на группы: ГУМОЛИТЫ (преобладающая часть), САПРОПЕЛИТЫ и САПРОГУМОЛИТЫ. По преобла­данию в органич. веществе тех или иных продуктов преобразования расте­ний выделяются подгруппы гумолитов: гумиты и ЛИПТОБИОЛИТЫ и классы сапропелитов и сапрогумолитов (напр., БОГХЕДЫ, КЕННЕЛИ), отличные по микрокомпонентному составу и свойст­вам. С учётом изменений химического состава, физических и технологических свойств углей ископаемых, обуслов­ленных их УГЛЕФИКАЦИЕЙ, выделяют­ся основные природные виды углей ископаемых: БУРЫЙ УГОЛЬ, КАМЕННЫЙ УГОЛЬ и АНТРА­ЦИТ, каждый из которых соответственно различиям в их вещественном составе и степени углефикации характеризует­ся широким диапазоном колебаний основных показателей качества и технологических свойств.

Основные компоненты углей ископаемых: органическое вещество, минеральные примеси и вла­га. Органическое вещество — носитель цен­ных свойств углей ископаемых — представлено различным сочетанием компонентов из полностью утратившего при торфо- и углеобразовании и углефикации или частично сох­ранившего первоначальную структуру раститительного материала. В химическом отношении органическое вещество сложено высоко молекулярными соединениями, структура которыхрых изучена недостаточно. В его элемент­ном составе преобладает углерод, подчинённое значение имеют кисло­род, водород и сера; в незначителных количествах присутствуют соли органических кислот и металлоорганические соединения. Масса органического вещества составляет 50—97% от общей массы сухого угля. Минеральные примеси рассеяны в ор­ганической массе или в угольных пластах в виде кристаллов, конкреций, тонких прослоев и линз. Наиболее распростра­нены глинистые минералы; содержа­ние их в среднем составляет 60—80% от общей массы неорганического материала. Подчинённое значение имеют карбона­ты, сульфиды железа и кварц. В нез­начительных количествах содержатся сульфиды цветных и редких металлов, фосфаты, сульфаты, соли щелочных металлов. Относительное содержание минеральных примесей в сухом веществе угля колеб­лется в широких пределах, с условным разграничением углей ископаемых и углистых пород по ЗОЛЬНОСТИ (А— 50—60%). Влага частично входит в состав органической мас­сы или содержится в кристаллизационных решётках некоторых минералов. Большая её часть удерживается сорбционными и капил­лярными силами в мелких порах и трещинах угля (связанная влага) или содержится в крупных трещинах и порах (свободная влага). Массовая доля суммарной свободной и связан­ной влаги ко­леблется от 60% в мягких рых­лых до 16% в плотных бурых углях, снижаясь до 6—10% в слабометаморфизованых камаменных углях и антрацитах. Минимальная влажность (до 4%) имеют среднеметаморфизованные каменные угли. Величина это­го показателя — один из основных парамет­ров классификации бурых углей. По­вышенные содержания минеральных примесей и влаги отрицательно ска­зываются на теплотехнические свойствах и технологических процессах переработки углей ископаемых, а также удорожают (как балласт) сто­имость их транспортировки. В России предельные их величины лимитируют­ся государственными стандартами для всех направле­ний хозяйства использования углей ископаемых. Боль­шая часть энергетических углей и всех углей ископаемых, направляемых для коксования, подвергается обогащению. Высшая теплота сгорания сухого беззольного угля (Qs a колеблется в пределах (МДж/кг): для бурых 25,5—32,6, для каменных 30,5—36,2 и для антрацитов 35,6—33,9; низшая теплота сгорания в пересчёте на рабочее топливо (Q,) — показатель количества тепла, которое может быть реализовано в топ­ках (МДж/кг): 6,1—18,8 для бурых углей, 22,0—22,5 для каменных углей и 20—26 для антрацитов.

Использование углей ископаемых в коксохимическом производстве лимитируется их спекаемостью — способностью переходить при нагревании в пластичном состояние и об­разовывать при затвердевании пори­стый монолит. Этим свойством облада­ют только каменные угли средних (II—V) стадий метаморфизма определённого петрографического состава. Бурые угли и антрациты дают неспёкшийся порош­кообразный нелетучий остаток, слабо- и сильнометаморфизованные каменные угли — порошкообразный или слабоспекшийся. Основные носители спекаемости — ком­поненты ВИТРИНИТА ГРУПП и ЛЕЙПТИ-НИТА; частично размягчаются ком­поненты группы семивитринита. Ком­поненты группы инертинита (фюзинита) не обладают способностью даже частичного размягчения. На различиях в спекаемости (соотношении плавких и отощающих компонентов) основана шихтовка углей, направляемых для кок­сования (см. КОКСУЮЩИЕСЯ УГЛИ). Для всех направлений технологического исполь­зования угля нормируется содержание серы. Большинстве месторождений содержит малосернистые (Sf0,1—1,5) угли, но в некоторых бассейнах средняя массовая до­ля серы в углях повышается до 3— 6% (Донбасс), 6% (Подмосковный, Кизеловский) и 8—10% (Иркутский). Массовая доля серы в сухом угле нор­мируется с учётом направлений ис­пользования углей ископаемых.

Углей ископаемых всех разведываемых и вовле­каемых в разработку месторождений подверга­ются техническому анализу с определением рабочей влаги, зольности, содержания серы, ВЫХОДА ЛЕТУЧИХ ВЕЩЕСТВ (V ). Определяется их элементный состав, теплота сгорания: высшая (по бомбе) и низшая (рабочего топлива). Изучаются петрографический состав и физические свойства углей — плотность действи­тельная и кажущаяся, обогатимость, механическая прочность и размолоспособность, в необходимых случаях — термическая стойкость, электрические свойства. С учётом возможного и намечае­мого использования углей произво­дятся специальные исследования по опре­делению для бурых и низкометаморфизованных углей — выхода смол, би­тумов, гуминовых кислот, для каменных — спекаемости, коксуемости, содержания фосфора. Для всех направлений ис­пользования и особенно для сжигания изучается состав и свойства ЗОЛЫ, со­держания в углях попутных полезных компонентов — урана, германия, гал­лия, ванадия, вольфрама, благород­ных металлов и др.

ГОРЮЧИЕ СЛАНЦЫ, пиробитуминозные сланцы,— осадочные породы карбонатно-глинистого (мергелистого), глинистого или кремнистого состава, содержащие 10—50%, редко до 60% сингенетичного осадконакоплению органического вещества (керогена). Горючие сланцы имеют коричневую, коричнево-жёлтую, се­рую, оливково-серую окраску, листо­ватую или массивную текстуру. Тер­мин «горючие сланци» иногда применяют для обоз­начения всех высокозольных твёрдых каустобиолитов, содержащих органические вещества различного происхождения и различных условий преобразования (углистых, би­туминозных и липтобиолитовых слан­цев).

Кероген — сингенетичное осадкона­коплению органическое вещество с высо­ким выходом смол при сухой перегон­ке, при органическом выходе битумов, экс­трагируемых органическими растворителями при низких температурах. Исходным мате­риалом органического вещества горючих сланцев служи­ла биомасса преимущественно низших водорос­лей (сапропелевые компоненты), в меньшей степени — высших растении (гумусовые компоненты) и частично животных организмов. По соотноше­нию сапропелевых и гумусовых компо­нентов горючие сланцы подразделяются на сапропелиты (горючие сланцы Прибалтийского сланцево­го бассейна, Волжского басе, и Болтышского месторождения) и сапрогумиты (менилитовые сланцы Карпат). Отличительная генетическая особенность органическрог веще­ства большинства горючих сланцев — его накопле­ние в донных осадках при нормаль­ном кислородном режиме. Органическое вещество горючих сланцев характеризуется высо­ким содержанием водорода (7—10%), большим выходом летучих при термической переработке (до 90%), высокой удельной теплотой сгорания (Q =29—37 МДж/кг). Основные минеральные компо­ненты горючих сланцев — кальцит, кварц и глинис­тые минералы, подчинённое значение имеют полевые шпаты, пирит, акцес­сорные минералы.

Для изучения состава и качества горючих сланцев используются углехимические методы иссле­дований, регламентированные в России государственными стандартами. В России к пригодным для промышленного применения относятся горючие сланцы с удельной теплотой сгорания сухого топлива (Qb) не менее 5 МДж/кг. Требова­ния к горючим сланцам разрабатываемых месторождений значительно выше. Согласно действую­щим государственным стандартам, минимальная величина Qb должна составлять: прибалтийские Г. с. для пылевидного сжигания 10,3 МДж/кг и для слоевого сжигания 11,7 МДж/кг, для переработки на газ и смолу — ленинградские 12,1 МДж/кг и эстонские 13,8 МДж/кг; Г. с. Кашпирского месторождения (Ср. Поволжье) для пылевидного сжигания 8,8 МДж/кг, для полукоксования 9,6 МДж/кг. Промышленной классификации горючих сланцев нет. Добываемые в Прибалтийском сланцевом басейне горючие сланцы подразделяются по крупности кусков на 2 сорта (класса) — энергетические (0—25 мм) и технологические (25— 125 мм). Большое число месторождений горючих сланцев относится к платформенным и имеет горизон­тальное и слабонаклонное залегание. В России горючие сланцы известны в кембрийских, ордовикских, девонских, каменно­угольных, юрских, палеоген-неогено­вых отложениях. Общепринятой оцен­ки мировых запасов горючих сланцев нет. Общие потенциальные ресурсы горючих сланцев в мире оценены в 450 трлн. т (26 трлн. т слан­цевой смолы). Переработка горючих сланцев в России — полукоксованием в шахтных генераторах с целью получе­ния сланцевой смолы и водно-раство­римых фенолов и коксованием в ка­мерных печах для производства бытового газа. Смола используется как жидкое топливо, компонент шпалопропиточного масла, для производства электродного кокса и др. Фенолы идут на производство синтетических дубителей, клея, лаков, мас­тик, модификаторов резины, тампонажных составов и др. ценных химических продуктов. Твёрдые отходы переработки горючих сланцев (зо­ла, сланцевый полукокс и кокс) широко используются в промышленности строительных мате­риалов для производства минеральной ва­ты, сланцезольного портландцемента, силикатного кирпича, автоклавных из­делий из тяжёлого сланцезольного бе­тона и газозолобетона, а также в до­рожном строительстве и для известкования почв. Карбонатные отходы добычи и обогащения горючих сланцев применяются для производства строительного щебня. Горючие сланцы отдельных месторождений имеют высокое содержание Си, Mo, U, Pb, Zn, V и оцениваются как рудное сырьё.

ГАЗЫ ПРИРОДНЫЕ ГОРЮЧИЕ смеси углеводородов метанового ряда и неуглеводородных компонентов, встречающиеся в осадочном чехле земной коры в виде свободных скоп­лений, а также в растворённом (в нефти и пластовых водах), рассе­янном (сорбированные породами) и твёрдом (в газогидратных залежах) состояниях.

Состав и свойства газа природного горючего. Углеводороды метанового ряда пред­ставлены метаном (содержание которого часто превышает 85—90%), этаном, пропаном, бутанами и реже пентаном (содержание которыхрых колеблется от 0,1% в газах газовых месторождений до 20% и более в газах нефтяных попутных и увеличивается с глубиной залегания). Углеводороды тяжелее пентана при­сутствуют в основном в газах нефтяных и газоконденсатных месторождений. Неугле­водородные компоненты представ­лены главным образом азотом, углекислым газом, водяными парами, кроме того, некоторые газы обогащены соедине­ниями серы (сероводород, меркап­таны, сероокись углерода и др.) гелием, аргоном, встречаются водо­род, ртуть, пары летучих жирных кислот. Содержание углекислого газа меняется от долей процента до 10—15%, иногда более, напремер в Астраханском месторождении концентрация СО2 22%. Концентрация азота в газе природном горючем обычно не превышает 10% (часто 2—3%), в газах отдельных нефте­газоносных бассейнов его содержание может достигать 30—50% (например, в Волго-Уральском) и более; известны месторождения с преимуществ, содержанием азота (Чу-Сарысуйская газоносная область: Амангельдинское месторождение — 80% N2 и 16% СН4; Учаральское месторождение — 99% N2). Количество сероводорода обычно не превышает 2—3%; как исключение известны газовые залежи с содержа­нием сероводорода 15—20% и более (Астраханское месторождение — 22,5%). Кон­центрации гелия в большинстве случаев составляют сотые и тысячные доли процента; в США и Канаде име­ются месторождения с содержанием гелия 5—8% (Ратлснейк —7,6%, Модл-Дом — 7,2%).

Факторами, определяющими влаж­ность газа, являются давление, температура, состав, а также количество солей, растворённых в воде, контактирующей с данным газом. Чем больше в газе природном горючем тяжёлых углеводородов и азота, тем ниже его влажность. Наличие серо­водорода и углекислого газа увеличи­вает его влажность. При промысловой обработке, транспортировке и пере­работке газа природного горючего наличие паров воды в них приводит к образованию конденсата водяных паров и ледяных пробок, что осложняет эксплуатацию газопроводов и аппаратов. Наличие влаги в газах при повышенном давле­нии и пониженных темп-pax вызывает образование и отложение в газо­проводах и технологических аппаратах гидра­тов углеводородных газов. Для уда­ления влаги из газов используют различные физические и физико-химические методы ОСУШКИ ГАЗОВ.

НЕФТЬ — горючая маслянистая жидкость со специфическим запахом, распространённая в осадоч­ной оболочке Земли, являющаяся важнейшим полезным ископаемым. Образуется вместе с газообразными углеводородами обычно на глубине более 1,2—2 км. Вблизи земной поверхности нефть преобразуется в густую мальту, полутвёрдый ас­фальт и др. Нефть в залежах в различной степени насыщена газом, в основном лёгкими угле­водородами.

Химический состав и физические свойства. Нефть — сложное природное образование, состоящее из углеводо­родов (метановых, нафтеновых и аро­матических) и неуглеводородных ком­понентов (в основном кислородных, сер­нистых и азотистых соединений).

Элементный состав Н.: С 82,5 — 87%; Н 11,5 — 14,5%; О 0,05 — 0,35, редко до 0,7%; S 0,001 — 5,5, ред­ко свыше 8%; N 0,02 — 1,8%. Ок. 1/3 всей добываемой в мире нефти содер­жит свыше 1 % S. Химический состав нефтей различных месторождений колеблется в широких пределах, и говорить о её среднем составе можно только условно. Бензиновые и керосиновые фракции большинства нефтей России характеризуются значит, содер­жанием алканов (свыше 50%), иногда преобладают нафтены (50—75%). Содержание ароматических углеводородов в бензиновых и керосиновых фрак­циях большинства нефтей от 3 до 15% и от 16 до 27% соответственно. Масля­ные дистилляты значительно разли­чаются по углеводородному составу. Наибольшим содержанием ароматических углеводородов (в некоторых случаях до 53—65%) отличаются фракции высокосернистых нефтей. Часто нефти харак­теризуются значительным содержанием твёр­дых углеводородов нормального строения — парафинов. Кислородные соединения присутствуют в виде неф­тяных кислот, асфальтенов и смол, содержащих св. 90% находящегося в нефти кислорода. Сернистые соединения нефтей — сероводород, меркаптаны, суль­фиды, дисульфиды, тиофаны, а также полицикличные сернистые соединения разнообразной структуры. Азотистые соединения — в основном гомологи пи­ридина, гидропиридина и гидрохинолина. Компонентами нефтей являются также газы, растворённые в ней (от 30 до 300 м 3 на 1 т Н.), вода и минеральные соли. Содержание золы (минеральных веществ) в большин­стве нефтей не превышает десятых долей процента. Максимальные концентра­ции металлов в нефти не превышают со­тых долей процента: V — 0,015%; Ni — 0,005%; Си — 0,0001%; Со — 0,00004%; Мо — 0,00044%; Сг — 0,00018%.

Цвет нефтей варьирует от светло-корич­невого до тёмно-бурого и чёрного; плотность от 800 до 980—1050 кг/м 3 (плотность менее 800 кг/м 3 имеют газовые конденсаты). По плотности нефти делятся на 3 группы: на долю лёгких нефтей (с плотностью до 870 кг/м 3 ) в об­щемировой добыче приходится око­ло 60% (в России — 66%); на долю средних нефтей (871—910 кг/м 3 ) в России — около 28%, за рубежом — 31%; на долю тяжёлых (св. 910 кг/м 3 ) — соот­ветственно ок. 6% и 10%.

Темпеpaтура начала кипения нефти выше 28 °С. Температуpa застывания колеблется от +26 до —60 °С и зависит от со­держания парафина (чем его больше, тем температуpa застывания выше), удельная теплоёмкость нефти 1,7—2,1 кДж, удельная теплота сгорания 43,7—46,2 МДж/кг, диэлектрическая проницаемость 2—2,5, электрическая проводимость 2- 10 -10 —0,3-10 -18 Ом -1 см -1 . Вязкость изменяется в широких пределах (при 50°С 1,2— 55 • 10 -6 м 2 /с) и зависит от химического и фрак­ционного состава нефти и смолистости (содержания в ней асфальтеново-смолистых веществ). Температуpa вспышки колеблется от 35 до 120°С в зави­симости от фракционного состава и давления насыщенных паров. Нефть растворима в органических растворителях, в воде при обычных условиях практически нерастворима (может образовывать с ней стойкие эмульсии).

источник

ГОРЮЧИЕ ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ. 3

РУДНЫЕ ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ. 4

Металлы платиновой группы (платина и платиноиды). 6

РАДИОАКТИВНЫЕ МЕТАЛЛЫ И ИХ РУДЫ. 6

НЕМЕТАЛЛИЧЕСКИЕ ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ. 7

Оптический кварц и пьезокварц. 8

ПЕРСПЕКТИВНЫЕ ИСТОЧНИКИ МИНЕРАЛЬНОГО СЫРЬЯ И НОВЫЕ МАТЕРИАЛЫ 8

МИНЕРАЛЬНЫЕ РЕСУРСЫ — полезные ископаемые в недрах Земли, запасы которых оценены по геологическим данным. Месторождения полезных ископаемых распределены в земной коре неравномерно.

Большинство видов минерального сырья представлено рудами, состоящими из минералов, т.е. неорганических веществ природного происхождения. Однако некоторые важные виды полезных ископаемых, в частности энергетическое сырье, имеют органическое происхождение. Их присоединяют к минеральному сырью условно.

Ценность отдельных видов минерального сырья определяется в зависимости от области их применения, а также от того, насколько редко они встречаются.

Минеральное сырье, необходимое для обеспечения оборонной промышленности и бесперебойного функционирования ее сырьевой базы, иногда называют стратегическим. Среди импортируемых материалов важное место занимают хром, олово, цинк, вольфрам, иттрий, марганец, платина и платиноиды, а также бокситы.

Читайте также:  Для желудка полезные бактерии

Бoльшую часть энергии во всем мире получают за счет сжигания ископаемого топлива – угля, нефти и газа. В ядерной энергетике тепловыделяющие элементы промышленных реакторов на АЭС состоят из урановых топливных стержней.

Уголь является важным национальным природным ресурсом в первую очередь благодаря своей энергетической ценности. Среди ведущих мировых держав только Япония не располагает большими запасами угля. Хотя уголь – самый распространенный вид энергоресурсов, на нашей планете имеются обширные территории, где угольных месторождений нет. Угли различаются по теплотворной способности: она самая низкая у бурого угля и самая высокая у антрацита. Мировая добыча угля составляет 4,7 млрд. т в год (1995). Однако во всех странах в последние годы проявляется тенденция к снижению его добычи, поскольку он уступает место другим видам энергетического сырья – нефти и газу. В ряде стран добыча угля становится нерентабельной в связи с отработкой наиболее богатых и сравнительно неглубоко залегающих пластов. Многие старые шахты закрываются как убыточные. Первое место по добыче угля занимает Китай, за ним следуют США, Австралия и Россия. Значительное количество угля добывается в Германии, Польше, ЮАР, Индии, на Украине и в Казахстане.

Условия образования. Нефтегазоносные осадочные бассейны обычно связаны с определенными геологическими структурами. Практически все крупные залежи нефти приурочены к участкам земной коры, которые в течение длительного времени испытывали прогибание, в результате чего там накопились особенно мощные осадочные толщи.

Нефть и газ встречаются в породах разного возраста – от кембрийских до плиоценовых. Иногда нефть добывается и из докембрийских пород, однако считается, что ее проникновение в эти породы вторично. Наиболее древние залежи нефти, приуроченные к палеозойским породам, установлены главным образом на территории Северной Америки. Вероятно, это можно объяснить тем, что здесь наиболее интенсивные поиски проводились в породах именно этого возраста.

Бoльшая часть нефтяных месторождений рассредоточена по шести регионам мира и приурочена к внутриматериковым территориям и окраинам материков: 1) Персидский залив – Северная Африка; 2) Мексиканский залив – Карибское море (включая прибрежные районы Мексики, США, Колумбии, Венесуэлы и о.Тринидад); 3) острова Малайского архипелага и Новая Гвинея; 4) Западная Сибирь; 5) северная Аляска; 6) Северное море (главным образом норвежский и британский секторы); 7) о.Сахалин с прилегающими участками шельфа.

Мировые запасы нефти составляют более 132,7 млрд. т. Из них 74% приходится на Азию, в том числе Ближний Восток (более 66%). Наибольшими запасами нефти обладают: Саудовская Аравия, Россия, Ирак, ОАЭ, Кувейт, Иран, Венесуэла.

Объем мировой добычи нефти составляет ок. 3,1 млрд. т, т.е. почти 8,5 млн. т в сутки. Добыча ведется 95 странами, причем более 77% продукции сырой нефти приходится на долю 15 из них, включая Саудовскую Аравию (12,8%), США (10,4%), Россию (9,7%), Иран (5,8%), Мексику (4,8%), Китай (4,7%), Норвегию (4,4%), Венесуэлу (4,3%), Великобританию (4,1%), Объединенные Арабские Эмираты (3,4%), Кувейт (3,3%), Нигерию (3,2%), Канаду (2,8%), Индонезию (2,4%), Ирак (1,0%).

Главные железосодержащие минералы – гематит, магнетит, лимонит, шамозит, тюрингит и сидерит. Месторождения железных руд классифицируют как промышленные при содержании металла не менее нескольких десятков миллионов тонн и неглубоком залегании рудных тел. В крупных месторождениях содержание железа исчисляется сотнями миллионов тонн.

Общая мировая добыча железной руды превышает 1 млрд. т. Больше всего руды (в млн. т) добывается в Китае (250), Бразилии (185), Австралии (более 140), России (78), США и Индии (по 60) и на Украине (45). В значительных масштабах добыча железной руды ведется также в Канаде, ЮАР, Швеции, Венесуэле, Либерии и Франции. Общие мировые ресурсы сырой (необогащенной) руды превышают 1400 млрд. т, промышленные – более 360 млрд. т.

По объему экспорта товарной железной руды первое место в мире занимает Австралия (143 млн. т). Суммарные запасы руды там достигают 28 млрд. т. Добыча ведется в основном (90%) в районе Хаммерсли (округ Пилбара, Западная Австралия). На втором месте находится Бразилия (131 млн. т), располагающая исключительно богатыми месторождениями, многие из которых сосредоточены в железорудном бассейне Минас-Жерайс.

– один из основных компонентов нержавеющей жаропрочной, кислотоупорной стали и важный ингредиент коррозионностойких и жаропрочных суперсплавов. Из 15,3 млрд. т предполагаемых запасов высокосортных хромитовых руд 79% приходится на ЮАР, где добыча составляет 5,1 млн. т, Казахстан (2,4 млн. т), Индию (1,2 млн. т) и Турцию (0,8 млн. т). Довольно крупное месторождение хрома находится в Армении. В России разрабатывается небольшое месторождение на Урале.

Бокситы, главное сырье алюминиевой промышленности. Бокситы перерабатываются на глинозем, а затем из криолит-глиноземного расплава получают алюминий. Бокситы распространены преимущественно во влажных тропиках и субтропиках, где протекают процессы глубокого химического выветривания горных пород.

Наибольшими запасами бокситов располагают Гвинея (42% мировых запасов), Австралия (18,5%), Бразилия (6,3%), Ямайка (4,7%), Камерун (3,8%) и Индия (2,8%). По масштабам добычи (42,6 млн. т) первое место занимает Австралия.

– наиболее ценный и один из самых распространенных цветных металлов. Крупнейший потребитель меди – электротехническая промышленность. Медь широко применяется в автомобилестроении и строительстве, а также расходуется на производство латуни, бронзы и медно-никелевых сплавов.

Наиболее важным сырьем для получения меди являются халькопирит и борнит (сульфиды меди и железа), халькозин (сульфид меди), а также самородная медь. Окисленные медные руды состоят в первую очередь из малахита (карбоната меди). Добытая медная руда часто обогащается на месте, затем рудный концентрат направляется на медеплавильный завод и далее – на рафинирование для получения чистой красной меди. Самый дешевый и распространенный способ переработки многих медных руд – гидрометаллургический.

Медные месторождения распространены преимущественно в пяти регионах мира: Скалистых горах США; докембрийском щите в пределах штата Мичиган (США) и провинций Квебек, Онтарио и Манитоба (Канада); в Чили и Перу; на Центрально- Африканском плато – в медном поясе Замбии и Демократической Республики Конго, а также в России, Казахстане, Узбекистане и Армении. Основные производители меди – Чили (2,5 млн. т), США (1,89 млн. т), Канада (730 тыс. т), Индонезия (460 тыс. т), Перу (405 тыс. т), Австралия (394 тыс. т), Польша (384 тыс. т), Замбия (342 тыс. т), Россия (330 тыс. т).

Около 64% всего производимого в мире никеля используется для получения никелевой стали, 16% никеля расходуется на гальванические покрытия стали, латуни, меди и цинка; 9% – на суперсплавы для турбин, авиационных креплений, турбокомпрессоров и т.п. Никель применяется при чеканке монет.

В первичных рудах никель присутствует в соединениях с серой и мышьяком, а во вторичных месторождениях образует рассеянную вкрапленность водных никелевых силикатов. Половина мировой добычи никеля приходится на долю России и Канады, крупномасштабная добыча ведется также в Австралии, Индонезии, ЮАР, Китае и Колумбии.

В США месторождения никелевых руд отсутствуют, и никель извлекают в качестве побочного продукта на единственном заводе по рафинированию меди, а также вырабатывают из металлолома.

– единственный металл и минерал, жидкий при обычной температуре (затвердевает при -38,9° C). Самая известная область применения – термометры, барометры и другие приборы. Ртуть используют в электротехнической аппаратуре, а также для изготовления красителей.

Ртуть и особенно ее пары очень токсичны.

Мировое производство ртути составляет 3049 т, а выявленные ресурсы ртути оцениваются в 675 тыс. т (главным образом в Испании, Италии, Югославии, Киргизии, на Украине и в России). Крупнейшие производители ртути – Испания (1497 т), Китай (550 т), Алжир (290 т), Мексика (280 т).

Общий объем добычи золота в мире составляет 2200 т . Первое место в мире по добыче золота занимает ЮАР (522 т), второе – США (329 т). Старейший и самый глубокий золотой рудник в США – Хоумстейк в горах Блэк-Хилс (Южная Дакота); добыча золота там ведется свыше 100 лет. Современные методы экстракции (иманирование) делают рентабельным извлечение золота из многочисленных бедных и убогих месторождений.

Поскольку золото практически не подвержено коррозии и высоко ценится, оно сохраняется вечно. До настоящего времени в виде слитков, монет, ювелирных изделий и предметов искусства дошло не менее 90% золота, добытого за исторический период. В результате ежегодной мировой добычи этого металла его суммарное количество увеличивается менее чем на 2%.

как и золото, относится к драгоценным металлам. Однако его цена по сравнению с ценой золота раньше составляла 1:16, а в 1995 сократилась до 1:76. Около 1/3 серебра идет на кино- и фотоматериалы (в основном пленку и фотобумагу), 1/4 используется в электротехнике и радиоэлектронике, 1/10 расходуется на чеканку монет и изготовление ювелирных изделий, на гальванические покрытия.

Примерно 2/3 мировых ресурсов серебра связано с полиметаллическими медными, свинцовыми и цинковыми рудами. Серебро извлекается в основном попутно из галенита (сульфида свинца). Месторождения преимущественно жильные. Наиболее крупные производители серебра – Мексика (2323 т), Перу (1910 т), США (1550 т), Канада (1207 т) и Чили (1042 т).

Платина – самый редкий и дорогостоящий драгоценный металл. Используются ее тугоплавкость (температура плавления 1772° C), большая прочность, стойкость против коррозии и окисления, высокая теплоэлектропроводность. Наиболее широкое применение платина находит в автомобильных каталитических нейтрализаторах, а также в платиново-рениевых катализаторах в нефтехимии. Служит для изготовления тиглей и другой лабораторной посуды. Почти весь объем добычи платины приходится на ЮАР (167,2 т), Россию (21 т) и Канаду (16,5 т)

Переработка 1 кг урана позволяет произвести столько же энергии, сколько дает сжигание 15 т угля. Урановые руды служат сырьем для получения других радиоактивных элементов, таких как радий и полоний, и разных изотопов, в том числе легких изотопов урана. Главные минералы урановых руд – урановая смолка уранит и карнотит.

Почти 22% электроэнергии в США вырабатывается атомными электростанциями, на которых действуют 110 ядерных реакторов, что гораздо выше соответствующих показателей в других странах. К примеру, в СССР в 1987 имелось 56 действующих реакторов и 28 – на стадии проектирования. Ведущее место в мире по уровню потребления атомной энергии занимает Франция, где АЭС вырабатывают ок. 76% электроэнергии.

Наибольшими разведанными запасами урана обладают Австралия (более 20% мировых запасов), Казахстан (18%), Канада (12%), Узбекистан (7,5%), Бразилия и Нигер (по 7%). Крупное месторождение уранита Шинколобве находится в Демократической Республике Конго. Значительными запасами располагают также Китай, Германия и Чехия.

применяется для легирования сплавов и является потенциальным источником получения ядерного топлива – легкого изотопа урана-233. Единственный источник тория – желтые полупрозрачные зерна монацита. Россыпные месторождения монацита известны в Австралии, Индии и Малайзии. «Черные» пески, насыщенные монацитом в ассоциации с рутилом, ильменитом и цирконом, распространены на восточном и западном (более 75% добычи) побережьях Австралии. В Индии месторождения монацита сосредоточены вдоль юго-западного побережья. В Малайзии монацит добывают из аллювиальных оловоносных россыпей.

Соединения азота применяются также в производстве взрывчатых веществ. Вплоть до окончания Первой мировой войны и в первые послевоенные годы монопольное положение на рынке нитратов принадлежало Чили. Позже широко развернулось производство искусственных нитратов с использованием атмосферного азота. США, где разработана технология получения безводного аммиака, содержащего 82,2% азота, занимают первое место в мире по его производству (60%). Возможности извлечения азота из атмосферы неограниченны, а необходимый водород получают в основном из природного газа и методом газификации твердого и жидкого топлива.

Промышленные месторождения фосфатов представлены фосфоритами и апатитовыми рудами. Бoльшая часть мировых ресурсов фосфатов сосредоточена в широко распространенных морских фосфоритовых осадках. Выявленные ресурсы оцениваются миллиардами тонн фосфора. Свыше 34% мировой добычи фосфатов приходится на США, далее следуют Марокко (15,3%), Китай (15%), Россия (6,6%) и Тунис (5,6%).

добывается более чем в 100 странах. Крупнейший ее производитель – США. Почти половина добытой поваренной соли используется в химической промышленности, 1/4 расходуется на предотвращение обледенения автомобильных дорог. Кроме того, она широко применяется в кожевенной и пищевой промышленности и является важным пищевым продуктом человека и животных.

Поваренную соль получают из месторождений каменной соли и путем выпаривания воды соленых озер и морской воды. Мировые ресурсы поваренной соли практически неисчерпаемы. Почти каждая страна обладает либо залежами каменной соли, либо установками по выпариванию соленой воды. Колоссальный источник поваренной соли – сам Мировой океан.

Первое место по добыче поваренной соли занимают США (21%), затем следуют Китай (14%), Канада и Германия (по 6%). Значительная добыча соли ведется во Франции, Великобритании, Австралии и Польше.

Самые известные из драгоценных камней, играют также важную роль в промышленности благодаря их исключительно высокой твердости. Технические алмазы используются как абразивные материалы. Из природных алмазов лишь небольшая часть ювелирная, остальные – технические кристаллы неювелирного качества. Технические алмазы получают также искусственно. Например в США производятся только синтетические алмазы

Обычно алмазы встречаются в трубчатых телах – трубках взрыва (диатремах). Однако существенная часть алмазов добывается из аллювиальных россыпных месторождений. Около 90% мировой добычи природных технических алмазов приходится на долю пяти стран: Австралии (44,3%), Конго (ДРК, 16,2%), Ботсваны (12,2%), России (9,3%) и ЮАР (7,2%).

Мировая добыча алмазов составляет 107,9 млн. каратов (200 мг); в том числе технических алмазов было добыто 91,2 млн. каратов (84,5%), ювелирных – 16,7 млн. каратов (15,5%). В Австралии и Конго доля ювелирных алмазов составляет всего 4–5%, в России – ок. 20%, в Ботсване – 24–25%, ЮАР – более 35%, в Анголе и Центральноафриканской Республике – 50–60%, в Намибии – 100%.

Кварц по распространенности в земной коре занимает второе место после полевых шпатов, но его чистые кристаллы (бесцветные прозрачные – горный хрусталь; темные, почти черные, просвечивающие или непрозрачные – морион) встречаются крайне редко. Между тем, именно такой кварц играет важную роль в оптических приборах (горный хрусталь) и в современных средствах связи. Самое важное применение пьезокварца – частотные фильтры и стабилизаторы частот в электронных приборах.

Основной поставщик природного пьезокварца (горного хрусталя) – Бразилия.

Более сотни негорючих минералов добываются из зеиной коры в настоящее время. Использование минерального ресурса включает в себя несколько этапов. Первый – обнаружение достаточно богатого месторождения, второй – извлечение минерала путем организации некоторой формы его добычи, третий – обработка руды, удаление примесей и превращение ее в нужную химическую форму, и последний – использование минерала для производства различных изделий.

Добыча. Обработка и использование любого минерала вызывает нарушение почвенного покрова и эрозию, загрязняет воздух и воду. Подземная добыча более опасный процесс, но он в гораздо меньшей степени нарушает почвенный покров. В большинстве случаев территории, на которых производится добыча, удаётся восстановить, но это очень дорогостоящий процесс.

Минеральные ресурсы не возобновляются, поэтому необходимо постоянно вести поиски новых месторождений. Все более увеличивается значение морей и океанов как источников получения нефти, серы, поваренной соли и магния; их добыча обычно ведется в шельфовой зоне. В перспективе стоит вопрос об освоении глубоководной зоны. Разработана технология добычи рудных железо-марганцевых конкреций со дна океана. В их состав входят также кобальт, никель, медь и ряд других металлов.

Крупномасштабная разработка глубоководных полезных ископаемых пока не начата ввиду экономического риска и нерешенности вопроса о правовом статусе таких месторождений. Соглашение по морскому праву, регламентирующее разработку минеральных ресурсов морского дна, не было подписано США и еще несколькими государствами.

К перспективным, заменяющим природное минеральное сырье, относятся керамические и полупроводниковые материалы. Металлы, керамические и полимерные материалы используются в качестве матрицы и армирующих компонентов для упрочения различных композиционных материалов. Пластические массы, или полимеры – самый широко используемый в США материал (больше, чем сталь, медь и алюминий вместе взятые). Исходным сырьем для получения пластмасс служат продукты нефтехимического синтеза. Однако в качестве сырья вместо нефти может использоваться и уголь.

Керамика – это неорганические неметаллические материалы, уплотненные путем термообработки и спекания. Обычные составляющие керамических материалов – кремний и оксид алюминия (глинозем), но они могут состоять также из карбидов бора и кремния, нитрида кремния, оксидов бериллия, магния, некоторых тяжелых металлов (например, циркония, меди). Керамические материалы ценят за их термо-, износо- и коррозионную стойкость, электрические, магнитные и оптические свойства (оптическое стекловолокно – тоже керамический материал).

Продолжаются исследования по поиску перспективных материалов, пригодных для использования в электронных, оптических и магнитных устройствах. Так, например, полупроводниками являются арсенид галлия, кремний, германий и некоторые полимеры. Перспективно использование галлия, индия, иттрия, селена, теллура, таллия и циркония.

источник

ГОРЮЧИЕ ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ. 3

РУДНЫЕ ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ. 4

Металлы платиновой группы (платина и платиноиды). 6

РАДИОАКТИВНЫЕ МЕТАЛЛЫ И ИХ РУДЫ. 6

НЕМЕТАЛЛИЧЕСКИЕ ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ. 7

Оптический кварц и пьезокварц. 8

ПЕРСПЕКТИВНЫЕ ИСТОЧНИКИ МИНЕРАЛЬНОГО СЫРЬЯ И НОВЫЕ МАТЕРИАЛЫ 8

МИНЕРАЛЬНЫЕ РЕСУРСЫ — полезные ископаемые в недрах Земли, запасы которых оценены по геологическим данным. Месторождения полезных ископаемых распределены в земной коре неравномерно.

Большинство видов минерального сырья представлено рудами, состоящими из минералов, т.е. неорганических веществ природного происхождения. Однако некоторые важные виды полезных ископаемых, в частности энергетическое сырье, имеют органическое происхождение. Их присоединяют к минеральному сырью условно.

Читайте также:  Полезна ли икра мойвы в банках

Ценность отдельных видов минерального сырья определяется в зависимости от области их применения, а также от того, насколько редко они встречаются.

Минеральное сырье, необходимое для обеспечения оборонной промышленности и бесперебойного функционирования ее сырьевой базы, иногда называют стратегическим. Среди импортируемых материалов важное место занимают хром, олово, цинк, вольфрам, иттрий, марганец, платина и платиноиды, а также бокситы.

Бoльшую часть энергии во всем мире получают за счет сжигания ископаемого топлива – угля, нефти и газа. В ядерной энергетике тепловыделяющие элементы промышленных реакторов на АЭС состоят из урановых топливных стержней.

Уголь является важным национальным природным ресурсом в первую очередь благодаря своей энергетической ценности. Среди ведущих мировых держав только Япония не располагает большими запасами угля. Хотя уголь – самый распространенный вид энергоресурсов, на нашей планете имеются обширные территории, где угольных месторождений нет. Угли различаются по теплотворной способности: она самая низкая у бурого угля и самая высокая у антрацита. Мировая добыча угля составляет 4,7 млрд. т в год (1995). Однако во всех странах в последние годы проявляется тенденция к снижению его добычи, поскольку он уступает место другим видам энергетического сырья – нефти и газу. В ряде стран добыча угля становится нерентабельной в связи с отработкой наиболее богатых и сравнительно неглубоко залегающих пластов. Многие старые шахты закрываются как убыточные. Первое место по добыче угля занимает Китай, за ним следуют США, Австралия и Россия. Значительное количество угля добывается в Германии, Польше, ЮАР, Индии, на Украине и в Казахстане.

Условия образования. Нефтегазоносные осадочные бассейны обычно связаны с определенными геологическими структурами. Практически все крупные залежи нефти приурочены к участкам земной коры, которые в течение длительного времени испытывали прогибание, в результате чего там накопились особенно мощные осадочные толщи.

Нефть и газ встречаются в породах разного возраста – от кембрийских до плиоценовых. Иногда нефть добывается и из докембрийских пород, однако считается, что ее проникновение в эти породы вторично. Наиболее древние залежи нефти, приуроченные к палеозойским породам, установлены главным образом на территории Северной Америки. Вероятно, это можно объяснить тем, что здесь наиболее интенсивные поиски проводились в породах именно этого возраста.

Бoльшая часть нефтяных месторождений рассредоточена по шести регионам мира и приурочена к внутриматериковым территориям и окраинам материков: 1) Персидский залив – Северная Африка; 2) Мексиканский залив – Карибское море (включая прибрежные районы Мексики, США, Колумбии, Венесуэлы и о.Тринидад); 3) острова Малайского архипелага и Новая Гвинея; 4) Западная Сибирь; 5) северная Аляска; 6) Северное море (главным образом норвежский и британский секторы); 7) о.Сахалин с прилегающими участками шельфа.

Мировые запасы нефти составляют более 132,7 млрд. т. Из них 74% приходится на Азию, в том числе Ближний Восток (более 66%). Наибольшими запасами нефти обладают: Саудовская Аравия, Россия, Ирак, ОАЭ, Кувейт, Иран, Венесуэла.

Объем мировой добычи нефти составляет ок. 3,1 млрд. т, т.е. почти 8,5 млн. т в сутки. Добыча ведется 95 странами, причем более 77% продукции сырой нефти приходится на долю 15 из них, включая Саудовскую Аравию (12,8%), США (10,4%), Россию (9,7%), Иран (5,8%), Мексику (4,8%), Китай (4,7%), Норвегию (4,4%), Венесуэлу (4,3%), Великобританию (4,1%), Объединенные Арабские Эмираты (3,4%), Кувейт (3,3%), Нигерию (3,2%), Канаду (2,8%), Индонезию (2,4%), Ирак (1,0%).

Главные железосодержащие минералы – гематит, магнетит, лимонит, шамозит, тюрингит и сидерит. Месторождения железных руд классифицируют как промышленные при содержании металла не менее нескольких десятков миллионов тонн и неглубоком залегании рудных тел. В крупных месторождениях содержание железа исчисляется сотнями миллионов тонн.

Общая мировая добыча железной руды превышает 1 млрд. т. Больше всего руды (в млн. т) добывается в Китае (250), Бразилии (185), Австралии (более 140), России (78), США и Индии (по 60) и на Украине (45). В значительных масштабах добыча железной руды ведется также в Канаде, ЮАР, Швеции, Венесуэле, Либерии и Франции. Общие мировые ресурсы сырой (необогащенной) руды превышают 1400 млрд. т, промышленные – более 360 млрд. т.

По объему экспорта товарной железной руды первое место в мире занимает Австралия (143 млн. т). Суммарные запасы руды там достигают 28 млрд. т. Добыча ведется в основном (90%) в районе Хаммерсли (округ Пилбара, Западная Австралия). На втором месте находится Бразилия (131 млн. т), располагающая исключительно богатыми месторождениями, многие из которых сосредоточены в железорудном бассейне Минас-Жерайс.

– один из основных компонентов нержавеющей жаропрочной, кислотоупорной стали и важный ингредиент коррозионностойких и жаропрочных суперсплавов. Из 15,3 млрд. т предполагаемых запасов высокосортных хромитовых руд 79% приходится на ЮАР, где добыча составляет 5,1 млн. т, Казахстан (2,4 млн. т), Индию (1,2 млн. т) и Турцию (0,8 млн. т). Довольно крупное месторождение хрома находится в Армении. В России разрабатывается небольшое месторождение на Урале.

Бокситы, главное сырье алюминиевой промышленности. Бокситы перерабатываются на глинозем, а затем из криолит-глиноземного расплава получают алюминий. Бокситы распространены преимущественно во влажных тропиках и субтропиках, где протекают процессы глубокого химического выветривания горных пород.

Наибольшими запасами бокситов располагают Гвинея (42% мировых запасов), Австралия (18,5%), Бразилия (6,3%), Ямайка (4,7%), Камерун (3,8%) и Индия (2,8%). По масштабам добычи (42,6 млн. т) первое место занимает Австралия.

– наиболее ценный и один из самых распространенных цветных металлов. Крупнейший потребитель меди – электротехническая промышленность. Медь широко применяется в автомобилестроении и строительстве, а также расходуется на производство латуни, бронзы и медно-никелевых сплавов.

Наиболее важным сырьем для получения меди являются халькопирит и борнит (сульфиды меди и железа), халькозин (сульфид меди), а также самородная медь. Окисленные медные руды состоят в первую очередь из малахита (карбоната меди). Добытая медная руда часто обогащается на месте, затем рудный концентрат направляется на медеплавильный завод и далее – на рафинирование для получения чистой красной меди. Самый дешевый и распространенный способ переработки многих медных руд – гидрометаллургический.

Медные месторождения распространены преимущественно в пяти регионах мира: Скалистых горах США; докембрийском щите в пределах штата Мичиган (США) и провинций Квебек, Онтарио и Манитоба (Канада); в Чили и Перу; на Центрально- Африканском плато – в медном поясе Замбии и Демократической Республики Конго, а также в России, Казахстане, Узбекистане и Армении. Основные производители меди – Чили (2,5 млн. т), США (1,89 млн. т), Канада (730 тыс. т), Индонезия (460 тыс. т), Перу (405 тыс. т), Австралия (394 тыс. т), Польша (384 тыс. т), Замбия (342 тыс. т), Россия (330 тыс. т).

Около 64% всего производимого в мире никеля используется для получения никелевой стали, 16% никеля расходуется на гальванические покрытия стали, латуни, меди и цинка; 9% – на суперсплавы для турбин, авиационных креплений, турбокомпрессоров и т.п. Никель применяется при чеканке монет.

В первичных рудах никель присутствует в соединениях с серой и мышьяком, а во вторичных месторождениях образует рассеянную вкрапленность водных никелевых силикатов. Половина мировой добычи никеля приходится на долю России и Канады, крупномасштабная добыча ведется также в Австралии, Индонезии, ЮАР, Китае и Колумбии.

В США месторождения никелевых руд отсутствуют, и никель извлекают в качестве побочного продукта на единственном заводе по рафинированию меди, а также вырабатывают из металлолома.

– единственный металл и минерал, жидкий при обычной температуре (затвердевает при -38,9° C). Самая известная область применения – термометры, барометры и другие приборы. Ртуть используют в электротехнической аппаратуре, а также для изготовления красителей.

Ртуть и особенно ее пары очень токсичны.

Мировое производство ртути составляет 3049 т, а выявленные ресурсы ртути оцениваются в 675 тыс. т (главным образом в Испании, Италии, Югославии, Киргизии, на Украине и в России). Крупнейшие производители ртути – Испания (1497 т), Китай (550 т), Алжир (290 т), Мексика (280 т).

Общий объем добычи золота в мире составляет 2200 т . Первое место в мире по добыче золота занимает ЮАР (522 т), второе – США (329 т). Старейший и самый глубокий золотой рудник в США – Хоумстейк в горах Блэк-Хилс (Южная Дакота); добыча золота там ведется свыше 100 лет. Современные методы экстракции (иманирование) делают рентабельным извлечение золота из многочисленных бедных и убогих месторождений.

Поскольку золото практически не подвержено коррозии и высоко ценится, оно сохраняется вечно. До настоящего времени в виде слитков, монет, ювелирных изделий и предметов искусства дошло не менее 90% золота, добытого за исторический период. В результате ежегодной мировой добычи этого металла его суммарное количество увеличивается менее чем на 2%.

как и золото, относится к драгоценным металлам. Однако его цена по сравнению с ценой золота раньше составляла 1:16, а в 1995 сократилась до 1:76. Около 1/3 серебра идет на кино- и фотоматериалы (в основном пленку и фотобумагу), 1/4 используется в электротехнике и радиоэлектронике, 1/10 расходуется на чеканку монет и изготовление ювелирных изделий, на гальванические покрытия.

Примерно 2/3 мировых ресурсов серебра связано с полиметаллическими медными, свинцовыми и цинковыми рудами. Серебро извлекается в основном попутно из галенита (сульфида свинца). Месторождения преимущественно жильные. Наиболее крупные производители серебра – Мексика (2323 т), Перу (1910 т), США (1550 т), Канада (1207 т) и Чили (1042 т).

Платина – самый редкий и дорогостоящий драгоценный металл. Используются ее тугоплавкость (температура плавления 1772° C), большая прочность, стойкость против коррозии и окисления, высокая теплоэлектропроводность. Наиболее широкое применение платина находит в автомобильных каталитических нейтрализаторах, а также в платиново-рениевых катализаторах в нефтехимии. Служит для изготовления тиглей и другой лабораторной посуды. Почти весь объем добычи платины приходится на ЮАР (167,2 т), Россию (21 т) и Канаду (16,5 т)

Переработка 1 кг урана позволяет произвести столько же энергии, сколько дает сжигание 15 т угля. Урановые руды служат сырьем для получения других радиоактивных элементов, таких как радий и полоний, и разных изотопов, в том числе легких изотопов урана. Главные минералы урановых руд – урановая смолка уранит и карнотит.

Почти 22% электроэнергии в США вырабатывается атомными электростанциями, на которых действуют 110 ядерных реакторов, что гораздо выше соответствующих показателей в других странах. К примеру, в СССР в 1987 имелось 56 действующих реакторов и 28 – на стадии проектирования. Ведущее место в мире по уровню потребления атомной энергии занимает Франция, где АЭС вырабатывают ок. 76% электроэнергии.

Наибольшими разведанными запасами урана обладают Австралия (более 20% мировых запасов), Казахстан (18%), Канада (12%), Узбекистан (7,5%), Бразилия и Нигер (по 7%). Крупное месторождение уранита Шинколобве находится в Демократической Республике Конго. Значительными запасами располагают также Китай, Германия и Чехия.

применяется для легирования сплавов и является потенциальным источником получения ядерного топлива – легкого изотопа урана-233. Единственный источник тория – желтые полупрозрачные зерна монацита. Россыпные месторождения монацита известны в Австралии, Индии и Малайзии. «Черные» пески, насыщенные монацитом в ассоциации с рутилом, ильменитом и цирконом, распространены на восточном и западном (более 75% добычи) побережьях Австралии. В Индии месторождения монацита сосредоточены вдоль юго-западного побережья. В Малайзии монацит добывают из аллювиальных оловоносных россыпей.

Соединения азота применяются также в производстве взрывчатых веществ. Вплоть до окончания Первой мировой войны и в первые послевоенные годы монопольное положение на рынке нитратов принадлежало Чили. Позже широко развернулось производство искусственных нитратов с использованием атмосферного азота. США, где разработана технология получения безводного аммиака, содержащего 82,2% азота, занимают первое место в мире по его производству (60%). Возможности извлечения азота из атмосферы неограниченны, а необходимый водород получают в основном из природного газа и методом газификации твердого и жидкого топлива.

Промышленные месторождения фосфатов представлены фосфоритами и апатитовыми рудами. Бoльшая часть мировых ресурсов фосфатов сосредоточена в широко распространенных морских фосфоритовых осадках. Выявленные ресурсы оцениваются миллиардами тонн фосфора. Свыше 34% мировой добычи фосфатов приходится на США, далее следуют Марокко (15,3%), Китай (15%), Россия (6,6%) и Тунис (5,6%).

добывается более чем в 100 странах. Крупнейший ее производитель – США. Почти половина добытой поваренной соли используется в химической промышленности, 1/4 расходуется на предотвращение обледенения автомобильных дорог. Кроме того, она широко применяется в кожевенной и пищевой промышленности и является важным пищевым продуктом человека и животных.

Поваренную соль получают из месторождений каменной соли и путем выпаривания воды соленых озер и морской воды. Мировые ресурсы поваренной соли практически неисчерпаемы. Почти каждая страна обладает либо залежами каменной соли, либо установками по выпариванию соленой воды. Колоссальный источник поваренной соли – сам Мировой океан.

Первое место по добыче поваренной соли занимают США (21%), затем следуют Китай (14%), Канада и Германия (по 6%). Значительная добыча соли ведется во Франции, Великобритании, Австралии и Польше.

Самые известные из драгоценных камней, играют также важную роль в промышленности благодаря их исключительно высокой твердости. Технические алмазы используются как абразивные материалы. Из природных алмазов лишь небольшая часть ювелирная, остальные – технические кристаллы неювелирного качества. Технические алмазы получают также искусственно. Например в США производятся только синтетические алмазы

Обычно алмазы встречаются в трубчатых телах – трубках взрыва (диатремах). Однако существенная часть алмазов добывается из аллювиальных россыпных месторождений. Около 90% мировой добычи природных технических алмазов приходится на долю пяти стран: Австралии (44,3%), Конго (ДРК, 16,2%), Ботсваны (12,2%), России (9,3%) и ЮАР (7,2%).

Мировая добыча алмазов составляет 107,9 млн. каратов (200 мг); в том числе технических алмазов было добыто 91,2 млн. каратов (84,5%), ювелирных – 16,7 млн. каратов (15,5%). В Австралии и Конго доля ювелирных алмазов составляет всего 4–5%, в России – ок. 20%, в Ботсване – 24–25%, ЮАР – более 35%, в Анголе и Центральноафриканской Республике – 50–60%, в Намибии – 100%.

Кварц по распространенности в земной коре занимает второе место после полевых шпатов, но его чистые кристаллы (бесцветные прозрачные – горный хрусталь; темные, почти черные, просвечивающие или непрозрачные – морион) встречаются крайне редко. Между тем, именно такой кварц играет важную роль в оптических приборах (горный хрусталь) и в современных средствах связи. Самое важное применение пьезокварца – частотные фильтры и стабилизаторы частот в электронных приборах.

Основной поставщик природного пьезокварца (горного хрусталя) – Бразилия.

Более сотни негорючих минералов добываются из зеиной коры в настоящее время. Использование минерального ресурса включает в себя несколько этапов. Первый – обнаружение достаточно богатого месторождения, второй – извлечение минерала путем организации некоторой формы его добычи, третий – обработка руды, удаление примесей и превращение ее в нужную химическую форму, и последний – использование минерала для производства различных изделий.

Добыча. Обработка и использование любого минерала вызывает нарушение почвенного покрова и эрозию, загрязняет воздух и воду. Подземная добыча более опасный процесс, но он в гораздо меньшей степени нарушает почвенный покров. В большинстве случаев территории, на которых производится добыча, удаётся восстановить, но это очень дорогостоящий процесс.

Минеральные ресурсы не возобновляются, поэтому необходимо постоянно вести поиски новых месторождений. Все более увеличивается значение морей и океанов как источников получения нефти, серы, поваренной соли и магния; их добыча обычно ведется в шельфовой зоне. В перспективе стоит вопрос об освоении глубоководной зоны. Разработана технология добычи рудных железо-марганцевых конкреций со дна океана. В их состав входят также кобальт, никель, медь и ряд других металлов.

Крупномасштабная разработка глубоководных полезных ископаемых пока не начата ввиду экономического риска и нерешенности вопроса о правовом статусе таких месторождений. Соглашение по морскому праву, регламентирующее разработку минеральных ресурсов морского дна, не было подписано США и еще несколькими государствами.

К перспективным, заменяющим природное минеральное сырье, относятся керамические и полупроводниковые материалы. Металлы, керамические и полимерные материалы используются в качестве матрицы и армирующих компонентов для упрочения различных композиционных материалов. Пластические массы, или полимеры – самый широко используемый в США материал (больше, чем сталь, медь и алюминий вместе взятые). Исходным сырьем для получения пластмасс служат продукты нефтехимического синтеза. Однако в качестве сырья вместо нефти может использоваться и уголь.

Керамика – это неорганические неметаллические материалы, уплотненные путем термообработки и спекания. Обычные составляющие керамических материалов – кремний и оксид алюминия (глинозем), но они могут состоять также из карбидов бора и кремния, нитрида кремния, оксидов бериллия, магния, некоторых тяжелых металлов (например, циркония, меди). Керамические материалы ценят за их термо-, износо- и коррозионную стойкость, электрические, магнитные и оптические свойства (оптическое стекловолокно – тоже керамический материал).

Продолжаются исследования по поиску перспективных материалов, пригодных для использования в электронных, оптических и магнитных устройствах. Так, например, полупроводниками являются арсенид галлия, кремний, германий и некоторые полимеры. Перспективно использование галлия, индия, иттрия, селена, теллура, таллия и циркония.

источник

Источники:
  • http://studopedia.ru/9_67_goryuchie-poleznie-iskopaemie.html
  • http://studfiles.net/preview/6227507/page:21/
  • http://znakka4estva.ru/dokumenty/geografiya/goryuchie-poleznye-iskopaemye
  • http://znakka4estva.ru/dokumenty/geografiya/goryuchie-poleznye-iskopaemye