Меню Рубрики

Когда явление самоиндукции может быть полезным

Термин индукция в электротехнике означает возникновение тока в электрической замкнутой цепи, если она находится в изменяющемся магнитном потоке. Открыта электромагнитная индукция всего-то двести лет назад Майклом Фарадеем. Значительно раньше это мог бы сделать Андре Ампер, проводивший похожие опыты. Он вставлял в катушку металлический стержень, а затем, вот незадача, шел в другую комнату посмотреть на стрелку гальванометра – а вдруг она шевельнется. А стрелка исправно делала свое дело – отклонялась, но пока Ампер странствовал по комнатам – возвращалась на нулевую отметку. Вот так явление самоиндукции дожидалось еще добрый десяток лет, пока катушка, прибор и исследователь окажутся одновременно в нужном месте.

Главным моментом этого эксперимента было то, что ЭДС индукции возникает только тогда, когда магнитное поле, проходящее через замкнутый контур, изменяется. А вот менять его можно как угодно – или изменять величину самого магнитного поля, или просто перемещать источник поля относительно того же замкнутого контура. ЭДС, которая при этом возникает, назвали “ЭДС взаимоиндукции”. Но это было только начало открытий в области индукции. Еще более удивительным было явление самоиндукции, которое открыл Джозеф Генри примерно в то же время. В его опытах было обнаружено, что магнитное поле катушки не только индуцировало ток в другой катушке, но и при изменении тока в этой катушке, наводило в ней же дополнительную ЭДС. Вот ее-то и назвали ЭДС самоиндукции. В электрических явлениях большое интерес представляет направление тока. Оказалось, что в случае с ЭДС самоиндукции ее ток направлен против своего “родителя” – тока, обусловленного основной ЭДС.

А можно наблюдать явление самоиндукции? Как говорится, нет ничего проще. Соберем две электрические цепи: первая — последовательно включенная катушка индуктивности и лампочка, а вторая – только лампочка. Подключим их к аккумулятору через общий выключатель. При включении можно видеть, что лампочка в цепи с катушкой загорается “нехотя”, а вторая лампочка, более быстрая “на подъем”, включается мгновенно. Что происходит? В обеих цепях после включения начинает протекать ток, причем он изменяется от нуля до своего максимума, а как раз изменения тока и дожидается катушка индуктивности, которая порождает ЭДС самоиндукции. Есть ЭДС и замкнутая цепь – значит, есть и ее ток, но направлен он противоположно основному току цепи, который, в конце концов, достигнет максимального значения, определяемого параметрами цепи, и перестанет расти, а раз нет изменения тока – нет и ЭДС самоиндукции. Все просто. Аналогичная картина, но с “точностью до наоборот”, наблюдается при выключении тока. Верная своей “вредной привычке” противодействовать любому изменению тока, ЭДС самоиндукции поддерживает его протекание в цепи после отключения питания.

Сразу же стал вопрос — в чем заключается явление самоиндукции? Было установлено, что на ЭДС самоиндукции влияет скорость изменения тока в проводнике, и можно записать:

Отсюда видно, что ЭДС самоиндукции Е прямопропорциональна скорости изменения тока dI/dt и коэффициенту пропорциональности L, названному индуктивностью. За свой вклад в исследование вопроса, в чем состоит явление самоиндукции, Джордж Генри был вознагражден тем, что его имя носит единица измерения индуктивности — генри (Гн). Именно индуктивность цепи протекания тока определяет явление самоиндукции. Можно представить, что индуктивность – это некое “хранилище” магнитной энергии. В случае увеличения тока в цепи электрическая энергия преобразуется в магнитную, задерживает рост тока, а при уменьшении тока магнитная энергия катушки преобразуется в электрическую и поддерживает ток в цепи.

Наверное, каждому приходилось видеть искру при выключении вилки из розетки – это самый распространенный вариант проявления ЭДС самоиндукции в реальной жизни. Но в быту размыкаются токи максимум 10-20 А, а время размыкания порядка 20 мсек. При индуктивности порядка 1 Гн ЭДС самоиндукции в этом случае будет равна 500 В. Казалось бы, что вопрос, в чем состоит явление самоиндукции, не так и сложен. А на самом деле, ЭДС самоиндукции представляет собой большую техническую проблему. Суть в том, что при разрыве цепи, когда контакты уже разошлись, самоиндукция поддерживает протекание тока, а это приводит к выгоранию контактов, т.к. в технике коммутируются цепи с токами в сотни и даже тысячи ампер. Здесь зачастую речь идет об ЭДС самоиндукции в десятки тысяч вольт, а это требует дополнительного решения технических вопросов, связанных с перенапряжениями в электрических цепях.

Но не все так мрачно. Бывает, что эта вредная ЭДС очень даже полезна, например, в системах зажигания ДВС. Такая система состоит из катушки индуктивности в виде автотрансформатора и прерывателя. Через первичную обмотку пропускается ток, который выключается прерывателем. В результате обрыва цепи возникает ЭДС самоиндукции в сотни вольт (при этом аккумулятор дает всего 12В). Дальше это напряжение дополнительно трансформируется, и на свечи зажигания поступает импульс больше 10 кВ.

источник

Явление самоиндукции
Щелкните по ссылке » Самоиндукция и взаимная индукция «, чтобы ознакомиться с презентацией раздела в формате PowerPoint. Для возврата к данной странице закройте окно программы PowerPoint.

До сих пор мы рассматривали изменяющиеся магнитные поля, не обращая внимание на то, что является их источником. На практике чаще всего магнитные поля создаются с помощью различного рода соленоидов, т.е. многовитковых контуров с током.

Здесь возможны два случая: при изменении тока в контуре изменяется магнитный поток, пронизывающий: а) этот же контур; б) соседний контур.

ЭДС индукции, возникающая в самом же контуре, называется ЭДС самоиндукции, а само явление – самоиндукция.

Если же ЭДС индукции возникает в соседнем контуре, то говорят о явлении взаимной индукции.

Ясно, что природа явления одна и та же, а разные названия использованы для того, чтобы подчеркнуть место возникновения ЭДС индукции.

Явление самоиндукции открыл американский ученый Дж. Генри.

Генри Джозеф (1797–1878) – американский физик, член Национальной АН, ее президент (1866–1878).

Работы посвящены электромагнетизму. Первый сконструировал мощные подковообразные электромагниты (1828), применив многослойные обмотки из изолированной проволоки (грузоподъемность их достигала одной тонны), открыл в 1831 г. принцип электромагнитной индукции (М. Фарадей первый опубликовал открытие индукции). Построил электрический двигатель (1831), обнаружил (1832) явление самоиндукции и экстратоки, установил причины, влияющие на индуктивность цепи. Изобрел электромагнитное реле. Построил телеграф, действовавший на территории Принстонского колледжа, установил в 1842 г. колебательный характер разряда конденсатора.

Явление самоиндукции можно определить следующим образом.

Ток I, текущий в любом контуре, создает магнитный поток Ф, пронизывающий этот же контур. При изменении I будет изменяться Ф. Следовательно, в контуре будет наводиться ЭДС индукции.

Т.к. магнитная индукция В пропорциональна току I следовательно

где L – коэффициент пропорциональности, названный индуктивностью контура.

Если внутри контура нет ферромагнетиков, то (т.к. ).

Индуктивность контура L зависит от геометрии контура, числа витков, площади витка контура.

За единицу индуктивности в СИ принимается индуктивность такого контура, у которого при токе возникает полный поток . Эта единица называется Генри (Гн).

Вычислим индуктивность соленоида L. Если длина соленоида l гораздо больше его диаметра d ( ), то к нему можно применить формулы для бесконечно длинного соленоида. Тогда

здесь N – число витков. Поток через каждый из витков

Но мы знаем, что , откуда индуктивность соленоида

где n – число витков на единицу длины, т.е. – объем соленоида, значит

, (5.1.1)

Из этой формулы можно найти размерность для магнитной постоянной:

При изменении тока в контуре возникает ЭДС самоиндукции, равная:

, (5.1.2)

Знак минус в этой формуле обусловлен правилом Ленца.

Явление самоиндукции играет важную роль в электротехнике и радиотехнике. Как мы увидим дальше, благодаря самоиндукции происходит перезарядка конденсатора, соединенного последовательно с катушкой индуктивности, в результате в такой LC-цепочке (колебательном контуре) возникают электромагнитные колебания.

источник

Изменяющийся по величине ток всегда создаёт изменяющееся магнитное поле, которое, в свою очередь, всегда индуктирует ЭДС. При всяком изменении тока в катушке (или вообще в проводнике) в ней самой индуктируется ЭДС самоиндукции, она зависит от скорости изменения тока. Чем больше скорость изменения тока, тем больше ЭДС самоиндукции.

Величина ЭДС самоиндукции зависит также от числа витков катушки и её размеров. Чем больше диаметр катушки и число её витков, тем больше ЭДС самоиндукции. Эта зависимость имеет большое значение в электротехнике. Направление ЭДС самоиндукции определяет Закон Ленца :

ЭДС самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего её тока.

Иначе говоря, убывание тока в катушке влечёт за собой появление ЭДС самоиндукции, направленной по направлению тока, т. е. препятствующей его убыванию. И, наоборот, — при возрастании тока в катушке возникает ЭДС самоиндукции, направленная против тока, т. е. препятствующая его возрастанию. Если ток в катушке не изменяется, то никакой ЭДС самоиндукции не возникает. Явление самоиндукции особенно резко проявляется в цепи, содержащей в себе катушку со стальным сердечником, так как сталь значительно увеличивает магнитный поток катушки, а следовательно, и величину ЭДС самоиндукции.

Продемонстрировать явление самоиндукции можно, проведя следующий эксперимент. Соберём электрическую цепь, состоящую из аккумулятора, разъединителя и двух параллельных цепей: в первой — лампочка и резистор, а во второй — лампочка и катушка, причём сопротивление обеих лампочек одинаковое, и сопротивление резистора и катушки также одинаково.

1. При включении разъединителя лампа Л1 загорится с задержкой, так как ЭДС самоиндукции катушки препятствует быстрому нарастанию тока в цепи лампы Л1 (рис. 1а и 1б).

2. При отключении разъединителя обе лампы кратковременно вспыхнут, так как ЭДС самоиндукции катушки выше ЭДС батареи. Когда ЭДС самоиндукции иссякает, то обе лампы одновременно гаснут (рис. 2а и 2б).

Явление самоиндукции имеет как положительные, так и отрицательные свойства, причём и те и другие проявляются при работе аппаратов и электрических цепей подвижного состава метрополитена:

  • Индуктивный шунт , подключённый параллельно обмоткам возбуждения тяговых электродвигателей, сглаживает колебания высокого напряжения на контактном рельсе (либо при кратковременном отрыве токоприёмников). Индуктивность этого шунта сравнима с индуктивностью обмоток возбуждения, а его ЭДС направлена всегда против ЭДС ОВ ТЭД. Таким образом, при снижении или снятии высокого напряжения с контактного рельса ЭДС индуктивного шунта препятствует снижению тока, а при повышении напряжения – препятствует нарастанию тока, что препятствует возникновению аварийного режима в силовой цепи и образованию кругового огня по коллектору электродвигателей.
  • Если разомкнуть цепь, содержащую катушку с большой индуктивностью, то при размыкании контактов будет образовываться электрическая дуга, способная привести к разрушению коммутационного аппарата, поэтому в подобных случаях необходимо применять устройство дугогашения или (для низковольтных цепей) подключать параллельно контактам конденсатор.

Магнитное поле контура, в котором сила тока изменяется, индуцирует ток не только в других контурах, но и в себе самом. Это явление получило название самоиндукции.

Опытным путём установлено, что магнитный поток вектора магнитной индукции поля, создаваемого текущим в контуре током, пропорционален силе этого тока:

где L– индуктивность контура. Постоянная характеристика контура, которая зависит от его формы и размеров, а так же от магнитной проницаемости среды, в которой находится контур. [L] = Гн (Генри,

Если за время dtток в контуре изменится наdI, то магнитный поток, связанный с этим током, изменится наdФ =LdIв результате чего в этом контуре появится ЭДС самоиндукции:

Читайте также:  Какая самая полезная тыква

Знак минус показывает, что ЭДС самоиндукции (а, следовательно, и ток самоиндукции) всегда препятствует изменению силы тока, который вызвал самоиндукцию.

Наглядным примером явления самоиндукции служат экстратоки замыкания и размыкания, возникающие при включении и выключении электрических цепей, обладающей значительной индуктивностью.

Магнитное поле обладает потенциальной энергией, которая в момент его образования (или изменения) пополняется за счёт энергии тока в цепи, совершающего при этом работу против ЭДС самоиндукции, возникающей вследствие изменения поля.

Работа dAза бесконечно малый промежуток времениdt, в течении которого ЭДС самоиндукциии токIможно считать постоянными, равняется:

. (5)

Знак минус указывает, что элементарная работа совершается током против ЭДС самоиндукции. Чтобы определить работу при изменении тока от 0 до I, проинтегрируем правую часть, получим:

. (6)

Эта работа численно равна приросту потенциальной энергии ΔW п магнитного поля, связанного с этой цепью, т.е.A= -ΔW п.

Выразим энергию магнитного поля через его характеристики на примере соленоида. Будем считать, что магнитное поле соленоида однородно и в основном расположено внутри его. Подставим в (5) значение индуктивности соленоида, выраженное через его параметры и значение силы тока I, выраженное из формулы индукции магнитного поля соленоида:

, (7)

где N – общее число витков соленоида; ℓ – его длина; S – площадь сечения внутреннего канала соленоида.

Разделив обе части на V, получим объёмную плотность энергии поля:

(10)

получим,

. (11)

Переменным называется ток, изменяющийся с течением времени и по величине и по направлению. Примером переменного тока может служить потребляемый промышленный ток. Этот ток является синусоидальным, т.е. мгновенное значение его параметров меняются со временем по закону синуса (или косинуса):

i = I 0 sinωt, u = U 0 sin(ωt + φ 0). (12)

Переменный синусоидальный ток можно получить, если вращать рамку (контур) с постоянной скоростью

в однородном магнитном поле с индукцией B (рис.5). При этом магнитный поток, пронизывающий контур, изменяется по закону

где S– площадь контура, α = ωt– угол поворота рамки за время t. Изменение потока приводит к возникновению ЭДС индукции

, (17)

направление которой определяется по правилу Ленца.

Если контур замкнут (рис.5), то по нему идёт ток:

. (18)

График изменения электродвижущей силыи индукционного токаi представлен на рис.6.

Переменный ток характеризуется периодом Т, частотой ν = 1/Т, циклической частотой

и фазой φ = (ωt + φ 0) Графически значения напряжения и силы переменного тока на участке цепи будут представляться двумя синусоидами, в общем случае сдвинутыми по фазе на φ.

Для характеристики переменного тока вводятся понятия действующего (эффективного) значения тока и напряжения. Эффективным значением силы переменного тока называется сила такого постоянного тока, который выделяет в данном проводнике столько же тепла за время одного периода, сколько выделяет тепла и данный переменный ток.

. (13)

Приборы, включенные в цепь переменного тока (амперметр, вольтметр), показывают эффективные значения тока и напряжения.

При изменении тока в проводнике, витке или индуктивной катушке изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока индуцирует в проводнике (витке, индуктивной катушке) ЭДС, действие которой направлено на поддержание предшествующего состояния поля. Такое явление называется самоиндукцией. Направление ЭДС самоиндукции определяется по правилуЛенца.

Электродвижущая сила самоиндукции имеет всегда такое на­правление, при котором она препятствует изменению вызвавшего ее тока .

Следовательно, при возрастании тока в проводнике (индуктивной катушке) индуцированная в ней ЭДС самоиндукции будет направлена против тока, т. е. будет препятствовать его возрастанию (рис. 10, а),и, наоборот, при уменьшении тока в проводнике (индуктивной катушке) возникает ЭДС самоиндукции, совпадающая по направлению с током, т. е. препятствующая его убыванию (рис. 10,6).

Способность различных проводников (индуктивных катушек)

индуцировать ЭДС самоиндукции оценивается индуктивностью L. Единица индуктивности — генри (Гн). Такой индуктивностью обладает проводник, в котором возникает ЭДС самоиндукции, равная 1 В, при изменении тока на 1 А за 1 с:

Знак « — » в формуле отражает правило Ленца.

а — при увеличении тока; б — при уменьшении тока

На практике индуктивность часто измеряют в тысячных долях генри — миллигенри (мГн) и в миллионных долях генри — микрогенри (мкГн).

Значение индуктивности L зависит от конструкции элементов цепи.

Так, для индуктивной катушки с числом витков w , магнитопроводом длины, сечения S и магнитной проницаемостью индуктивность

Если катушки своими полями не влияют друга на друга, то при последовательном соединении индуктивных катушек с индуктивностями . общая индуктивность

Если ток в индуктивной катушке не изменяется, то ЭДС самоиндукции не возникает.

Явление самоиндукции в тех или иных проводниках характеризуется индуктивностью L. Индуктивность — это размерный коэффициент пропорциональности между скоростью изменения тока во времени и индуцируемой при этом ЭДС.

1. При каких условиях возникает ЭДС самоиндукции?

2. В каких единицах измеряется индуктивность?

3. Как изменится ЭДС самоиндукции, если скорость изменения тока, проходящего через индуктивную катушку, возросла?

Если две индуктивные катушки находятся на некотором расстоянии друг от друга (рис..11) и по одной из них (1) проходит изменяющийся ток, то часть магнитного потока, возбуждаемая этим током, пронизывает витки второй индуктивной катушки (2) и в ней

возникает ЭДС, называемая ЭДС взаимоиндукции.

Если два замкнутых контура или две индуктивные катушки 1 и 2 (см. рис. 11) сцеплены с общим магнитным потоком , то такие контуры и индуктивные катушки называют индуктивно- или магнитно-связанными .

Под действием ЭДС взаимоиндукции в замкнутой цепи второй индуктивной катушки

взаимоиндукции. Он вызывает появление магнитного поля, которое пронизывает витки первой индуктивной катушки, в результате чего в ней также возникает ЭДС взаимоиндукции. Такое явление называется взаимоиндукцией

Величина ЭДС взаимоиндукции, возникающей во второй индуктивной катушке, зависит от размеров, расположения индуктивных катушек, магнитной проницаемости их сердечников, а также скорости изменения силы тока — в первой индуктивноикатушке.Эту зависимость можно выразить формулой.

Рис..11. Взаимоиндукция: Э — индуктивно-связанные катушки.

гдеМ — величина, зависящая от размеров индуктивных катушек, их расположения и магнитной проницаемости среды между индуктивными катушками. Она называется взаимной индуктивностью и измеряется в генри (Гн). Знак « — » в этой формуле показывает, что ЭДС взаимоиндукции противодействует причине, вызывающей ее.

Взаимоиндукция дает возможность связывать посредством магнитного поля различные электрические цепи. Явление взаимоиндукции широко используют в трансформаторах, радиотехнических устройствах и устройствах автоматики.

1. Какое явление называется взаимоиндукцией?

2. При каких условиях возникает ЭДС взаимоиндукции?

3. Какие катушки называют магнитносвязанными?

4. В каких единицах измеряется взаимная индуктивность?

Изменяющийся магнитный поток способен индуцировать ЭДС не только в проводах или витках индуктивных катушек, но и в массивных стальных сердечниках, кожухах и других металлических деталях электротехнических установок. Эти ЭДС являются причиной

появления индуцированных токов, которые действуют в массивных металлических деталях электротехнических устройств, замыкаясь накоротко в их толще. Такие токи получили название вихревых токов. Природа вихревых токов такая же, как и токов, индуцированных в обычных проводах или индуктивных катушках. Благодаря

очень малому сопротивлению массивных проводников вихревые токи даже при небольшой индуцированной ЭДС достигают очень больших значений, вызывая чрезмерное нагревание этих проводников.

Способы уменьшения вредного действия вихревых токов.В электрических машинах и аппаратах вихревые токи обычно нежелательны, так как они вызывают нагрев металлических сердечников, создают потери энергии (так называемые потери от вихревых токов), снижают КПД электрических машин и аппаратов и ока;!Ь1вают согласно правилу Ленца размагничивающее действие. Для уменьшения вредного действия вихревых токовприменяют два основных способа.

1. Сердечники электрических машин и аппаратов выполняют из отдельных стальных листов толщиной 0,35- 1,0 мм, изолированных один от другого слоем изоляции (лаковой пленкой, окалиной, образующейся при отжиге листов, и пр.). Благодаря этому преграждается путь распространению вихревых токов.

2. В состав электротехнической стали, из которой изготовляют сердечники электрических машин и аппаратов, вводят 1- 5% кремния, что обеспечивает повышение ее электрического сопртивления. Благодаря этому достигается снижение силы вихревых токов, протекающих по сердечникам электрических машин и аппаратов.

Использование вихревых токов. Вихревые токи используют для плавки металлов, с их помощью нагревают металлические детали при сварке, наплавке и пайке, а также осуществляют поверхностный нагрев, необходимый для закалки металлических изделий.

1. Что является причиной появления вихревых токов?

2. Какие способы уменьшения вредного действия вихревых токов вам

3. Где можно найти полезное применение вихревым токам?

источник

Самоиндукцией называется появление в проводнике электродвижущей силы (ЭДС), направленной в противоположную сторону относительно напряжения источника питания при протекании тока. При этом оно возникает в момент, когда сила тока в цепи изменяется. Изменяющийся электрической ток порождает изменяющееся магнитное поле, оно в свою очередь наводит ЭДС в проводнике.

Это похоже на формулировку закона электромагнитной индукции Фарадея, где сказано:

При прохождении магнитного потока через проводник, в последнем возникает ЭДС. Она пропорциональна скорости изменения магнитного потока (мат. производная по времени).

Где E – ЭДС самоиндукции, измеряется в вольтах, Ф – магнитный поток, единица измерения – Вб (вебер, он же равен В/с)

Мы уже сказали о том, что самоиндукция присуща индуктивным цепям, поэтому рассмотрим явление самоиндукции на примере катушки индуктивности.

Катушка индуктивности – это элемент, который представляет собой катушку из изолированного проводника. Для увеличения индуктивности увеличивают число витков или внутрь катушки помещают сердечник из магнитомягкого или другого материала.

Единица измерения индуктивности – Генри (Гн). Индуктивность характеризует то, насколько сильно проводник противодействует электрическому току. Так как вокруг каждого проводника, по которому протекает ток, образуется магнитное поле, и, если поместить проводник в переменное поле – в нем возникнет ток. В свою очередь магнитные поля каждого витка катушки складываются. Тогда вокруг катушки, по которой протекает ток, возникнет сильное магнитное поле. При изменении его силы в катушке будет изменяться и магнитный поток вокруг неё.

Согласно закону электромагнитной индукции Фарадея, если катушку будет пронизывать переменный магнитный поток, то в ней возникнет ток и ЭДС самоиндукции. Они будут препятствовать току, который протекал в индуктивности от источника питания к нагрузке. Их еще называют экстратоки ЭДС самоиндукции.

Формула ЭДС самоиндукции на индуктивности имеет вид:

То есть чем больше индуктивность, и чем больше и быстрее изменился ток – тем сильнее будет всплеск ЭДС.

При возрастании тока в катушке возникает ЭДС самоиндукции, которая направлена против напряжения источника питания, соответственно возрастание тока замедлится. То же самое происходит при убывании – самоиндукция приведет к появлению ЭДС, которое будет поддерживать ток в катушке в том же направлении, что и до этого. Отсюда следует, что напряжение на выводах катушки будет противоположным полярности источника питания.

На рисунке ниже вы видите, что при включении/отключении индуктивной цепи ток не резко возникает, а изменяется постепенно. Об этом говорят и законы коммутации.

Другое определение индуктивности звучит так: магнитный поток пропорционален току, но в его формуле индуктивность выступает в качестве коэффициента пропорциональности.

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Читайте также:  Полезно ли масло тыквенное

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда дроссель (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к образованию дуги при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Напоследок рекомендуем просмотреть полезное видео по теме, на которых кратко и подробно рассматривается явление самоиндукции:

Надеемся, теперь вам стало понятно, что такое самоиндукция, как она проявляется и где ее можно использовать. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

источник

При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи ( вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток ( стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключенииярко вспыхивает.

в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции?

Эл.ток создает собственное магнитное поле . Магнитный поток через контур пропорционален индукции магнитного поля (Ф

B), индукция пропорциональна силе тока в проводнике
(B

I), следовательно магнитный поток пропорционален силе тока (Ф

I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника
(размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность — физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:

где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды
( возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

· 15 вопрос: Явление самоиндукции при замыкании и размыкании цепи. Закон изменения тока при замыкание и размыкание цепи.

Явление самоиндукции наблюдается не только при выключении, но и при включении тока. В пространстве, окружающем проводник, магнитное поле возникает сразу при включении тока.

Явление самоиндукции широко используется в индукционных катушках, в трансформаторах и других приборах.

Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, в которых запасена большая магнитная энергия, то искра может перейти в дуговой разряд и испортить выключатель. Для размыкания таких цепей на электростанциях пользуются масляными выключателями и применяются другие меры предосторожности.

Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, в которых запасена большая магнитная энергия, то искра может перейти в дуговой разряд и испортить выключатель.

Явление самоиндукции нами было рассмотрено на примере одновитковой рамки. Очевидно, что чем больше витков в рамке, тем больше будет магнитный поток, оцепленный с рамкой.

Явление самоиндукции нами было рассмотрено на примере одновитковой рамки. Очевидно, что чем больше витков в рамке, тем больше будет магнитный поток, сцепленный с рамкой. Опыт подтверждает это заключение.

Явление самоиндукции сказывается, однако, в процессе включения цепи постоянного тока, когда ток возрастает от нуля до своего конечного значения /, и при отключении, когда ток спадает от значения / до нуля, а также при резком изменении тока, например при коротких замыканиях в цепи.

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток

внутренним сопротивлением источника тока пренебрегаем).

В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент време­ни ток в цепи определяется закономОмаI= s/R, или

(127.1)

Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I до I) и t (от 0 до t), находим ln (I /I) = –Rt/L, или

(127.2)

где t=L/R — постоянная, называемаявременем релаксации. Из (127.2) следует, что t есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, или

Введя новую переменную преобразуем это уравнение к виду

В момент замыкания (t=0) сила тока I = 0 и u = – . Следовательно, интегрируя по и (от – до IR– ) и t (от 0 до t), находим ln[(IR– )]/– = —t/t, или

(127.3)

где — установившийся ток (при t®¥).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации t=L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индук­тивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение дляI и t, получим

т. е. при значительном увеличении сопротивления цепи (R/R>>1), обладающей боль­шой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникнове­ние значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток

внутренним сопротивлением источника тока пренебрегаем).

В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент време­ни ток в цепи определяется закономОмаI= s/R, или

(127.1)

Разделив в выражении (127.1) переменные, получим Интегрируя это уравнение по I (от I до I) и t (от 0 до t), находим ln (I /I) = –Rt/L, или

(127.2)

где t=L/R — постоянная, называемаявременем релаксации. Из (127.2) следует, что t есть время, в течение которого сила тока уменьшается в е раз.

Читайте также:  Шиповник чем полезен отвар

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, или

Введя новую переменную преобразуем это уравнение к виду

В момент замыкания (t=0) сила тока I = 0 и u = – . Следовательно, интегрируя по и (от – до IR– ) и t (от 0 до t), находим ln[(IR– )]/– = —t/t, или

(127.3)

где — установившийся ток (при t®¥).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению . Скорость нарастания тока определяется тем же временем релаксации t=L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индук­тивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение дляI и t, получим

т. е. при значительном увеличении сопротивления цепи (R/R>>1), обладающей боль­шой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникнове­ние значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

· 16 вопрос: Явление взаимной индукции. Коэффициент взаимной индукции.

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, «натянутую» на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

Если два контуpа находятся по соседству, и по одному из них пpотекает изменяющийся по вpемени ток, то в дpугом контуpе наводится ЭДС. Такая связь контуpов хаpактеpизуется коэффициентом взаимной индукции (взаимной индуктивностью). Магнитный поток, создаваемый во втоpом контуpе (pис. 4.14) полем от тока в пеpвом контуpе, пpопоpционален току I1:

Коэффициент М21 называется взаимной индуктивностью втоpого контуpа в зависимости от пеpвого. Очевидно, аналогичным обpазом можно опpеделить взаимную индуктивность пеpвого контуpа в зависимости от втоpого, согласно фоpмуле

Докажем, что М21 = М12. Допустим, что пеpвый контуp удаляется от втоpого на большое pасстояние. Пpи этом над контуpом пpидется совеpшить pаботу

Допустим тепеpь, что втоpой контуp удаляется от пеpвого также на большое pасстояние. В этом случае совеpшенная pабота вычисляется по фоpмуле

Согласно закону сохpанения энеpгии эти pаботы pавны, т.е.

Таким обpазом, если в одном контуpе течет пеpеменный ток, то во втоpом контуpе наводится ЭДС:

Это явление называют взаимной индукцией.
Рассмотpим тепеpь уединенный контуp с током. С ним будет сцеплен поток собственного магнитного поля. Очевидно, этот поток также пpопоpционален току, т.е.

Коэффициент пpопоpциональности между током и потоком собственного магнитного поля контуpа называется коэффициентом самоиндукции или индуктивностью контуpа.
Тогда, если по контуpу течет пеpеменный ток, то в нем индуциpуется ЭДС, называемая ЭДС самоиндукции.

Рассмотpенное явление называют самоиндукцией.
B цепях пеpеменного тока ЭДС самоиндукции следует учитывать. ЭДС самоиндукции пpиходится пpинимать в pасчет пpи замыкании и pазмыкании цепей, по котоpым пpотекают любые токи большой величины: пеpеменные и постоянные. Пpи замыкании цепи сила тока наpастает. По пpавилу Ленца ЭДС самоиндукции будет напpавлена так, чтобы пpотиводействовать наpастанию тока в цепи, это обстоятельство pастягивает установление тока на какое-то коpоткое вpемя. Пpи pазмыкании цепи, наобоpот, ЭДС будет пpотиводействовать убыванию тока и затягивать его «спадание». Это означает, что в момент pазpыва pубильника на воздушном пpомежутке между электpодами на коpоткое вpемя обpазуется большое напpяжение, котоpое может пpивести к пpобою пpомежутка, т.е. появлению искpы.
Найдем индуктивность длинного соленоида с сеpдечником. Для этого следует найти зависимость магнитного потока, сцепленного с соленоидом, от силы тока. Ранее было показано, что

Индуктивность соленоида пpопоpциональна магнитной пpоницаемости сеpдечника и квадpату числа витков. Несколько замечаний по поводу единиц измеpений.
Магнитный поток в СИ измеpяется в вебеpах (Вб), в СГС — в максвеллах (Мкс). Соотношение между вебеpом и максвеллом следующее:

Индуктивность (взаимная индуктивность) контуpа в СИ измеpяется в генpи (Гн), в СГС — в сантиметpах (см). Фоpмула, опpеделяющая индуктивность контуpа, в СГС записывается с коэффициентом

Найдем, опиpаясь на нее, соотношение между генpи и сантиметpом и тем самым пpоиллюстpиpуем общий метод нахождения пеpеходных коэффициентов. Запишем исходные фоpмулы в виде:

Поделим соответствующие члены этих фоpмул дpуг на дpуга, тогда получим:

Рассмотpим вопpос об энеpгии магнитного поля. Магнитное поле как физическая система обладает энеpгией. Энеpгия есть функция состояния системы, а поэтому энеpгия магнитного поля должна выpажаться чеpез магнитную индукцию В. Найдем энеpгию магнитного поля контуpа, по котоpому течет ток, как функцию силы тока. Допустим, что ток в контуpе наpастает, наpастает и магнитное поле. Пpи этом внешние силы совеpшают отpицательную pаботу (внешние тела отдают энеpгию магнитному полю), котоpая выpажается известной нам фоpмулой

Эта pабота идет на увеличение энеpгии магнитного поля, т.е.

Полная энеpгия магнитного поля W находится путем интегpиpования:

Поле в общем случае неодноpодно. Энеpгия поля сосpедоточена в поле, и ее концентpация в неодноpодном поле в pазличных точках поля pазлична: там, где поле сильнее, там больше и сконцентpиpовано энеpгии. Следовательно, для хаpактеpистики энеpгии поля нужно ввести, как это делалось и для электpического поля, понятие плотности энеpгии поля, т.е. энеpгии поля, пpиходящейся на единицу объема. В общем случае плотность энеpгии опpеделяется так: допустим, что в малом объеме dV вблизи данной точки поля сконцентpиpована энеpгия dW, тогда плотность энеpгии w опpеделяется соотношением

где w есть функция вектоpа индукции магнитного поля. Легче всего найти эту функцию, pассматpивая одноpодное поле, напpимеp поле внутpи соленоида. Воспользуемся фоpмулой (4.31) пpименительно к соленоиду:

где V = lS — объем соленоида. Плотность энеpгии одноpодного поля находится по пpостой фоpмуле:

Итак, плотность энеpгии магнитного поля пpопоpциональна В2, так же как и плотность энеpгии электpического поля пpопоpциональна Е2.

· 17 вопрос: Энергия магнитного поля. Плотность энергии магнитного поля.

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения [1] , магнитная составляющая электромагнитного поля [2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) [3] [4] . С математической точки зрения — векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

· Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции а вектор напряжённости магнитного поля , что формально можно сделать, так как в вакууме эти два вектора совпадают [5] ; однако в магнитной среде вектор не несет уже того же физического смысла [6] , являясь важной, но всё же вспомогательной величиной. Поэтому при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно

Магнитное поле можно назвать особым видом материи [7] , посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности,свет и все другие электромагнитные волны.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.

Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна Wм = LI2/ 2

Приращение плотности энергии магнитного поля равно:

H — напряжённость магнитного поля,

B — магнитная индукция

В линейном тензорном приближении магнитная проницаемость есть тензор (обозначим его ) и умножение вектора на неё есть тензорное (матричное) умножение:

или в компонентах [13] .

Плотность энергии в этом приближении равна:

— компоненты тензора магнитной проницаемости,

— тензор, представимый матрицей, обратной матрице тензора магнитной проницаемости,

— магнитная постоянная

При выборе осей координат совпадающими с главными осями [14] тензора магнитной проницаемости формулы в компонентах упрощаются:

— диагональные компоненты тензора магнитной проницаемости в его собственных осях (остальные компоненты в данных специальных координатах — и только в них! — равны нулю).

В изотропном линейном магнетике:

— относительная магнитная проницаемость

В вакууме и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

Дата добавления: 2016-12-18 ; просмотров: 1084 | Нарушение авторских прав

источник

Источники:
  • http://ens.tpu.ru/POSOBIE_FIS_KUSN/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D0%BC/05-1.htm
  • http://levevg.ru/when-and-where-the-phenomenon-of-selfinduction-arises-the-phenomenon-of-selfinduction/
  • http://samelectrik.ru/chto-takoe-samoindukciya.html
  • http://lektsii.org/13-17991.html