Меню Рубрики

Оптическая микроскопия полезное увеличение разрешающая способность

Микроскоп предназначен для наблюдения мелких объектов с большим увеличением и с большей разрешающей способностью, чем дает лупа. Оптическая система микроскопа состоит из двух частей: объектива и окуляра. Объектив микроскопа образует действительное увеличенное обратное изображение предмета в передней фокальной плоскости окуляра. Окуляр действует как лупа и образует мнимое изображение на расстоянии наилучшего видения (рис. 6.4). По отношению ко всему микроскопу рассматриваемый предмет располагается в передней фокальной плоскости.


Рис. 6.4. Оптическая схема микроскопа.

Действие микрообъектива характеризуют его линейным увеличением:

, (6.5)

где – фокусное расстояние микрообъектива, – расстояние между задним фокусом объектива и передним фокусом окуляра, называемое оптическим интервалом или оптической длиной тубуса.

Изображение, создаваемое объективом микроскопа в передней фокальной плоскости окуляра рассматривается через окуляр, который действует как лупа с видимым увеличением:

. (6.6)

Общее увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра:

.
(6.7)

Если известно фокусное расстояние всего микроскопа, то его видимое увеличение можно определить так же, как и у лупы:

. (6.8)

Как правило, увеличение современных объективов микроскопов стандартизованное и составляет ряд чисел: 10, 20, 40, 60, 90, 100 крат. Увеличения окуляров тоже имеют вполне определенные значения, например 10, 20, 30 крат. Во всех современных микроскопах имеется комплект объективов и окуляров, которые специально рассчитываются и изготавливаются так, что подходят друг к другу, поэтому их можно комбинировать для получения разных увеличений.

Поле зрения микроскопа зависит от углового поля окуляра , в пределах которого получается изображение достаточно хорошего качества:

. (6.9)

При данном угловом поле окуляра линейное поле микроскопа в пространстве предметов тем меньше, чем больше его видимое увеличение.

Диаметр выходного зрачка микроскопа вычисляется следующим образом:

. (6.10)

где – передняя апертура микроскопа.

Диаметр выходного зрачка микроскопа обычно немного меньше диаметра зрачка глаза (0.5 – 1 мм).

При наблюдении в микроскоп зрачок глаза нужно совмещать с выходным зрачком микроскопа.

Одной из важнейших характеристик микроскопа является его разрешающая способность. Согласно дифракционной теории Аббе, линейный предел разрешения микроскопа, то есть минимальное расстояние между точками предмета, которые изображаются как раздельные, зависит от длины волны и числовой апертуры микроскопа:

. (6.11)

Предельно достижимую разрешающую способность оптического микроскопа можно сосчитать, исходя из выражения для апертуры микроскопа (). Если учесть, что максимально возможное значение синуса угла – единичное (), то для средней длины волны можно вычислить разрешающую способность микроскопа: .

Из выражения (6.11) следует, что повысить разрешающую способность микроскопа можно двумя способами: либо увеличивая апертуру объектива, либо уменьшая длину волны света, освещающего препарат.

Для того чтобы увеличить апертуру объектива, пространство между рассматриваемым предметом и объективом заполняется так называемой иммерсионной жидкостью – прозрачным веществом с показателем преломления больше единицы. В качестве такой жидкости используют воду (), кедровое масло (), раствор глицерина и другие вещества. Апертуры иммерсионных объективов большого увеличения достигают величины , тогда предельно достижимая разрешающая способность иммерсионного оптического микроскопа составит .

Для увеличения разрешающей способности микроскопа вторым способом применяются ультрафиолетовые лучи, длина волны которых меньше, чем у видимых лучей. При этом должна быть использована специальная оптика, прозрачная для ультрафиолетового света. Поскольку человеческий глаз не воспринимает ультрафиолетовое излучение, необходимо либо прибегнуть к средствам, преобразующим невидимое ультрафиолетовое изображение в видимое, либо фотографировать изображение в ультрафиолетовых лучах. При длине волны разрешающая способность микроскопа составит .

Кроме повышения разрешающей способности, у метода наблюдения в ультрафиолетовом свете есть и другие преимущества. Обычно живые объекты прозрачны в видимой области спектра, и поэтому перед наблюдением их предварительно окрашивают. Но некоторые объекты (нуклеиновые кислоты, белки) имеют избирательное поглощение в ультрафиолетовой области спектра, благодаря чему они могут быть «видимы» в ультрафиолетовом свете без окрашивания.

Глаз наблюдателя сможет воспринимать две точки как раздельные, если угловое расстояние между ними будет не меньше углового предела разрешения глаза. Для того чтобы глаз наблюдателя мог полностью использовать разрешающую способность микроскопа, необходимо иметь соответствующее видимое увеличение.

Полезное увеличение – это видимое увеличение, при котором глаз наблюдателя будет полностью использовать разрешающую способность микроскопа, то есть разрешающая способность микроскопа будет такая же, как и разрешающая способность глаза.

Если две точки в передней фокальной плоскости микроскопа расположены друг от друга на расстоянии , то угловое расстояние между изображениями этих точек . Из выражений (6.11) и (6.8) можно вывести видимое увеличение микроскопа:

. (6.12)

Поскольку обычно диаметр выходного зрачка микроскопа около 0.5 – 1 мм, угловой предел разрешения глаза 2´ – 4´. Если взять среднюю длину волны в видимой области спектра (0.5 мкм), то для полезного увеличения микроскопа можно вывести зависимость:

. (6.13)

Микроскоп с видимым увеличением меньше 500А не позволяет различать глазом все тонкости структуры предмета, которые изображаются как раздельные данным объективом (). Использование видимого увеличения больше 1000А нецелесообразно, так как разрешающая способность объектива не позволяет полностью использовать разрешающую способность глаза ().

источник

Микроскоп предназначен для наблюдения мелких объектов с большим увеличением и с большей разрешающей способностью, чем дает лупа. Оптическая система микроскопа состоит из двух частей: объектива и окуляра. Объектив микроскопа образует действительное увеличенное обратное изображение предмета в передней фокальной плоскости окуляра. Окуляр действует как лупа и образует мнимое изображение на расстоянии наилучшего видения. По отношению ко всему микроскопу рассматриваемый предмет располагается в передней фокальной плоскости.

Оптическая схема микроскопа.

Действие микрообъектива характеризуют его линейным увеличением: Vоб=-Δ/F\’об * F\’об — фокусное расстояние микрообъектива * Δ — расстояние между задним фокусом объектива и передним фокусом окуляра, называемое оптическим интервалом или оптической длиной тубуса.

Изображение, создаваемое объективом микроскопа в передней фокальной плоскости окуляра рассматривается через окуляр, который действует как лупа с видимым увеличением:

Общее увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра: G=Vоб*Gок

Если известно фокусное расстояние всего микроскопа, то его видимое увеличение можно определить так же, как и у лупы:

Как правило, увеличение современных объективов микроскопов стандартизованное и составляет ряд чисел: 10, 20, 40, 60, 90, 100 крат. Увеличения окуляров тоже имеют вполне определенные значения, например 10, 20, 30 крат. Во всех современных микроскопах имеется комплект объективов и окуляров, которые специально рассчитываются и изготавливаются так, что подходят друг к другу, поэтому их можно комбинировать для получения разных увеличений.

Поле зрения микроскопа зависит от углового поля окуляра ω, в пределах которого получается изображение достаточно хорошего качества: 2y=500*tg(ω)/G * G — увеличение микроскопа

При данном угловом поле окуляра линейное поле микроскопа в пространстве предметов тем меньше, чем больше его видимое увеличение.

Диаметр выходного зрачка микроскопа вычисляется следующим образом:
где A – передняя апертура микроскопа.

Диаметр выходного зрачка микроскопа обычно немного меньше диаметра зрачка глаза (0.5 – 1 мм).

При наблюдении в микроскоп зрачок глаза нужно совмещать с выходным зрачком микроскопа.

Одной из важнейших характеристик микроскопа является его разрешающая способность. Согласно дифракционной теории Аббе, линейный предел разрешения микроскопа, то есть минимальное расстояние между точками предмета, которые изображаются как раздельные, зависит от длины волны и числовой апертуры микроскопа:
Предельно достижимую разрешающую способность оптического микроскопа можно сосчитать, исходя из выражения для апертуры микроскопа . Если учесть, что максимально возможное значение синуса угла – единичное , то для средней длины волны можно вычислить разрешающую способность микроскопа:

Повысить разрешающую способность микроскопа можно двумя способами: * Увеличивая апертуру объектива, * Уменьшая длину волны света.

Для того чтобы увеличить апертуру объектива, пространство между рассматриваемым предметом и объективом заполняется так называемой иммерсионной жидкостью – прозрачным веществом с показателем преломления больше единицы. В качестве такой жидкости используют воду , кедровое масло , раствор глицерина и другие вещества. Апертуры иммерсионных объективов большого увеличения достигают величины , тогда предельно достижимая разрешающая способность иммерсионного оптического микроскопа составит.

Для увеличения разрешающей способности микроскопа вторым способом применяются ультрафиолетовые лучи, длина волны которых меньше, чем у видимых лучей. При этом должна быть использована специальная оптика, прозрачная для ультрафиолетового света. Поскольку человеческий глаз не воспринимает ультрафиолетовое излучение, необходимо либо прибегнуть к средствам, преобразующим невидимое ультрафиолетовое изображение в видимое, либо фотографировать изображение в ультрафиолетовых лучах. При длине волны разрешающая способность микроскопа составит.

Кроме повышения разрешающей способности, у метода наблюдения в ультрафиолетовом свете есть и другие преимущества. Обычно живые объекты прозрачны в видимой области спектра, и поэтому перед наблюдением их предварительно окрашивают. Но некоторые объекты (нуклеиновые кислоты, белки) имеют избирательное поглощение в ультрафиолетовой области спектра, благодаря чему они могут быть «видимы» в ультрафиолетовом свете без окрашивания.

Квалифицированные специалисты в области микроскопии, всегда готовы предоставить Вам исчерпывающую информацию о нашем оборудовании.

Вся предоставленная на сайте информация, касающаяся комплектации, характеристик, а также стоимости продукции, носит информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437(2) Гражданского кодекса Российской Федерации.

источник

Разрешающая способность глаза ограничена. Разрешающая способность характеризуется разрешаемым расстоянием, т.е. минимальным расстоянием между двумя соседними частицами, при котором они еще видимы раздельно. Разрешаемое расстояние для невооруженного глаза составляет около 0,2 мм. Для увеличения разрешающей способности используют микроскоп. Для исследования строения металлов микроскоп был впервые применен в 1831 году Аносовым П.П., изучавшим булатную сталь, и позднее, в 1863 году англичанином Г. Сорби, изучавшим метеоритное железо.

Разрешаемое расстояние определяется соотношением:

где l — длина волны света, идущего от объекта исследования в объектив, n – показатель преломления среды, находящейся между объектом и объективом, и a — угловая апертура, равная половине угла раскрытия, входящего в объектив пучка лучей, дающих изображение. Эта важная характеристика объектива выгравирована на его оправе.

У хороших объективов максимальный апертурный угол a = 70° и sina » 0,94. В большинстве исследований применяют сухие объективы, работающие в воздушной среде (n = 1). Для уменьшения разрешаемого расстояния используют иммерсионные объективы. Пространство между объектом и объективом заполняют прозрачной жидкостью (иммерсией) с большим показателем преломления. Обычно используют каплю кедрового масла (n = 1,51).

Если для видимого белого света принять l = 0,55 мкм, то минимальное разрешаемое расстояние светового микроскопа:

Таким образом, разрешающая способность светового микроскопа ограничена длиной волны света. Объектив дает увеличение промежуточного изображения объекта, которое рассматривается в окуляр, как в лупу. Окуляр увеличивает промежуточное изображение объекта и не может повысить разрешающей способности микроскопа.

Общее увеличение микроскопа равно произведению увеличений объектива и окуляра. На металлографических микроскопах производят исследования структуры металлов с увеличением от 20 до 2000 раз.

Начинающие делают обычную ошибку, стремясь рассматривать структуру сразу же при большом увеличении. Следует иметь в виду, что чем больше увеличение объекта, тем меньший участок виден в поле зрения микроскопа. Поэтому рекомендуется начинать исследование с использования слабого объектива, чтобы вначале оценить общий характер структуры металла на большой площади. Если же начинать микроанализ с использования сильного объектива, то многие важные особенности структуры металла могут быть не замечены.

После общего просмотра структуры при малых увеличениях микроскопа выбирают объектив с такой разрешающей способностью, чтобы увидеть все необходимые самые мелкие детали структуры.

Окуляр выбирают так, чтобы четко были видны детали структуры, увеличенные объективом. При недостаточном увеличении окуляра мелкие детали промежуточного изображения, созданного объективом, не будут увидены в микроскоп, и, таким образом, разрешающая способность объектива полностью не будет использована. При слишком большом увеличении окуляра новые детали структуры не выявляются, в то же время контуры уже выявленных деталей окажутся размытыми, а поле зрения станет более узким. Собственное увеличение окуляра выгравировано на его оправе (например, 7 х ).

При выбранном объективе рекомендуется взять такой окуляр, чтобы общее увеличение микроскопа находилось в интервале 500 – 1000. Более высокое увеличение микроскопа, не выявляя новых деталей структуры, ухудшает резкость изображения.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Микроскоп — оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом.

Микроскоп применяют для получения больших увеличений при наблюдении мелких предметов. Увеличенное изображение предмета в микроскопе получается с помощью оптической системы, состоящей из двух короткофокусных линз — объектива O1 и окуляра O2. Объектив даст действительное перевернутое увеличенное изображение предмета. Это промежуточное изображение рассматривается глазом через окуляр, действие которого аналогично действию лупы. То есть изображение в микроскопе получается перевернутым. Окуляр располагают так, чтобы промежуточное изображение находилось в его фокальной плоскости; в этом случае лучи от каждой точки предмета распространяются после окуляра параллельным пучком.

Полезное увеличение микроскопа — такое увеличение, при котором предмет, имеющий размер, равный пределу разрешения микроскопа, имеет изображение, размер которого равен пределу разрешения глаза.

Читайте также:  Полезна ли для организма горчица

Полезное увеличение микроскопа находится в области 500 — 1000-кратной величины апертуры объектива. Нормальным увеличением микроскопа называется такое, которое получается при 500 А и диаметре зрачка выхода, равном 1 мм.

Полезное увеличение микроскопа в среднем равно 1000-кратному.

Полезное увеличение микроскопа определяется увеличением объектива, поэтому на совершенствование объективов обращается серьезное внимание.

Полезное увеличение N микроскопа должно быть подобрано так, чтобы при этом была рациональным образом использована разрешающая сила объектива микроскопа. Для этого необходимо, чтобы угловая величина изображения наблюдаемой детали по отношению к центру зрачка глаза была бы не меньше 2 минут, а еще лучше, как принято считать, доходила бы до 4 минут, что обусловлено разрешающей способностью глаза.

Одной из важнейших характеристик микроскопа является его разрешающая способность. Разрешение — способность оптического прибора воспроизводить изображение близко расположенных объектов. Линейный предел разрешения микроскопа, то есть минимальное расстояние между точками предмета, которые изображаются как раздельные, зависит от длины волны и числовой апертуры микроскопа:

Апертура — характеристика оптического прибора, описывающая его способность собирать свет и противостоять дифракционному размытию деталей изображения.

A = nSin(α/2), где n — показатель преломления той среды, в которой находится предмет и из которой исходят лучи, а α — угол, составляемый крайними лучами, идущими из предмета и попадающими еще в объектив.

Повысить разрешающую способность микроскопа можно двумя способами: либо увеличивая апертуру объектива, либо уменьшая длину волны света, освещающего препарат.

Метод исследования в темном поле впервые был предложен австрийскими

учеными Р. Зигмонди и Р. Зидентопфом в 1903 году и подходит для

рассеивающих свет объектов.

В основе метода лежит освещение препарата полым конусом света,

внутренняя апертура которого превосходит числовую апертуру применяемого

объектива. Поскольку ни один прямой луч от

осветителя в объектив попасть не может, при

отсутствии объекта поле зрения микроскопа

будет темным. Объект, помещенный на

предметный столик, будет рассеивать свет во

все стороны, в том числе и в сторону объектива,

благодаря чему на темном фоне будет видно

контрастное изображение объекта.

В микроскопе проходящего света тип

освещения создается посредством кольцевой

диафрагмы в конденсоре (рис. 8). В случае,

когда в исследованиях используется объектив с

высокой числовой апертурой, есть вероятность,

что часть света все же будет попадать объектив.

По этой причине используются

специализированные объективы, имеющие

встроенную внутреннюю ирисовую диафрагму,

которая позволяет уменьшать эффективное значение NAobj до величины,

достаточной для наблюдения в темном поле.

Поляризационная микроскопия – это метод наблюдения в поляризованном свете для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов). Таковыми являются многие минералы, зёрна в шлифах сплавов, некоторые животные и растительные ткани и пр. Оптические свойства анизотропных микрообъектов различны в различных направлениях и проявляются по-разному в зависимости от ориентации этих объектов относительно направления наблюдения и плоскости поляризации света, падающего на них. Наблюдение можно проводить как в проходящем, так и в отражённом свете. Свет, излучаемый осветителем, пропускают через поляризатор. Сообщенная ему при этом поляризация меняется при последующем прохождении света через препарат (или отражении от него). Эти изменения изучаются с помощью анализатора и различных оптических компенсаторов. Анализируя такие изменения, можно судить об основных оптических характеристиках анизотропных микрообъектов: силе двойного лучепреломления, количестве оптических осей и их ориентации, вращении плоскости поляризации, дихроизме.

Метод исследования в свете люминесценции (люминесцентная микроскопия, или флуоресцентная микроскопия) состоит в наблюдении под микроскопом зелено-оранжевого свечения микрообъектов, которое возникает при их освещении сине-фиолетовым светом или не видимыми глазом ультрафиолетовыми лучами. В оптическую схему микроскопа вводятся два светофильтра. Один из них помещают перед конденсором. Он пропускает от источника-осветителя излучение только тех длин волн, которые возбуждают люминесценцию либо самого объекта (собственная люминесценция), либо специальных красителей, введённых в препарат и поглощённых его частицами (вторичная люминесценция). Второй светофильтр, который установлен после объектива, пропускает к глазу наблюдателя (или на фоточувствительный слой) только свет люминесценции. В люминесцентной микроскопии используют освещение препаратов как сверху (через объектив, который в этом случае служит и конденсором), так и снизу, через обычный конденсор. Наблюдение при освещении сверху иногда называют «люминесцентной микроскопией в отражённом свете» (этот термин условен — возбуждение свечения препарата не является простым отражением света). Его часто используют совместно с наблюдением по фазово-контрастному методу в проходящем свете. Метод нашел широкое применение в микробиологии, вирусологии, гистологии, цитологии, в пищевой промышленности, при исследовании почв, в микрохимическом анализе, в дефектоскопии. Такое многообразие применений объясняется очень высокой цветовой чувствительностью глаза и высокой контрастностью изображения самосветящегося объекта на тёмном нелюминесцирующем фоне. Кроме того, информация о составе и свойствах исследуемых веществ, которую можно получить, зная интенсивность и спектральный состав их люминесцентного излучения, имеет огромную ценность.

источник

Технически возможно создать оптические микроскопы, объективы и окуляры которых дадут общее увеличение 1500-2000 и больше. Однако это нецелесообразно, так как возможность различить мелкие детали предмета ограничивается дифракционными явлениями. Вследствие этого изображение мельчайших деталей предмета теряет резкость, может возникнуть нарушение геометрического подобия изображения и предмета, соседние точки будут сливаться в одну, возможно полное исчезновение изображения. Поэтому в оптике существуют следующие понятия, которые характеризуют качество микроскопа:

Разрешающая способность микроскопа — свойство микроскопа давать раздельно изображение мелких деталей рассматриваемого предмета.

Предел разрешения — это наименьшее расстояние между двумя точками, которые видны в микроскопе раздельно.

Чем меньше предел разрешения, тем выше разрешающая способность микроскопа!

Предел разрешения обусловливает наименьший размер деталей, которые могут различаться в препарате с помощью микроскопа.

Теорию разрешающей способности микроскопа разработал директор завода К.Цейса в Йене профессор-оптик Э.Аббе (1840-1905). В качестве простейшего микропрепарата он взял дифракционную решетку ( рис. 2), изучил механизм формирования изображения в микроскопе и показал следующее.

1. Пучок вторичных световых волн после дифракции на объекте DD попадает в объектив и создает в результате интерференции в его фокальной плоскости FF дифракционную картину — систему главных максимумов и минимумов.

2. Далее в формировании изображения участвуют только лучи, образующие главные максимумы. Они пересекаются в соответствующей плоскости и дают изображение объекта DD ’ .

Введем понятиеапертурного угла — это угол между крайними лучами конического светового пучка, идущего от середины объекта в объектив ( рис. 3,а). Для создания изображения, то есть для разрешения объекта, достаточно, чтобы в объектив попали лучи, образующие максимумы только нулевого и первого порядка хотя бы с одной стороны ( рис. 2 и 3,б). Участие в образовании изображения лучей от большего количества максимумов повышает качество изображения, его контраст. Поэтому лучи, образующие эти максимумы, должны быть в пределах апертурного угла объектива.

1- фронтальная линза объектива, 2 — объектив

Таким образом, если объектом является дифракционная решетка с периодом d и свет падает на нее нормально ( рис.2 и 3,б), то в формировании изображения обязательно должны участвовать лучи, образующие максимумы нулевого и первого порядков с обеих сторон, а угол j1 — угол отклонения лучей, образующих максимум первого порядка, соответственно должен быть, в крайнем случае, равен углу U/2.

Если же взять решетку с меньшим периодом d’, то угол j’1 будет больше угла U/2 и изображение не возникнет. Значит период решетки d можно принять за предел разрешения микроскопа Z. Тогда, используя формулу дифракционной решетки, запишем для k=1:

.

. (6)

Во время микроскопии световые лучи падают на объект под разными углами. При наклонном падении лучей (рис.3,г) предел разрешения уменьшается, так как в формировании изображения будут участвовать только лучи, образующие максимумы нулевого порядка и первого порядка с одной стороны, а угол j1 будет равен апертурному углу U. Расчеты показывают, что формула для предела разрешения в этом случае принимает следующий вид:

. (7)

Если пространство между объектом и объективом заполнить иммерсионной средой с показателем преломления n, который больше показателя преломления воздуха, то длина волны света ln = l ¤ n. Подставляя это выражение в формулу для предела разрешения (7), получим

, или . (8)

Таким образом, формула (7) определяет предел разрешения для микроскопа с сухим объективом, а формула (8) -для микроскопа с иммерсионным объективом. Величины sin 0,5U и sin0,5Uв этих формулах называют числовой апертурой объектива и обозначают буквой А. Учитывая это, формулу предела разрешения микроскопа в общем виде записывают так :

. ( 9)

Как видно из формул (8) и (9), разрешающая способность микроскопа зависит от длины волны света, величины апертурного угла, показателя преломления среды между объективом и объектом, угла падения световых лучей на объект, но она не зависит от параметров окуляра. Окуляр никакой дополнительной информации о структуре объекта не дает, качества изображения не повышает, он лишь увеличивает промежуточное изображение.

Разрешающая способность микроскопа может быть повышена за счет использования иммерсии и уменьшения длины волны света. Повышение разрешающей способности при использовании иммерсии можно пояснить следующим образом. Если между объективом и объектом находится воздух (сухой объектив), то световой луч при переходе из покровного стекла в воздух, среду с меньшим показателем преломления, значительно изменяет свое направление в результате преломления, поэтому меньше лучей попадает в объектив. При использовании иммерсионной среды, показатель преломления которой приблизительно равен показателю преломления стекла, изменение хода лучей в среде не наблюдается и большее количество лучей попадает в объектив.

В качестве иммерсионной жидкости берут воду (n=1,33), кедровое масло (n=1,515) и др. Если максимальный апертурный угол у современных объективов достигает 140 0 , то для сухого объектива А=0,94, а для объектива с масляной иммерсией А=1,43. Если при расчете использовать длину волны света l = 555 нм, к которой наиболее чувствителен глаз, то предел разрешения сухого объектива составит 0,30 мкм, а с масляной иммерсией — 0,19 мкм. Значение числовой апертуры указывается на оправе объектива: 0,20; 0,40; 0,65 и др.

Повышение разрешающей способности оптического микроскопа за счет уменьшения длины волны света достигается при использовании ультрафиолетового излучения. Для этого имеются специальные ультрафиолетовые микроскопы с кварцевой оптикой и приспособлениями для наблюдения и фотографирования объектов. Так как в этих микроскопах используется свет с длиной волны примерно в два раза меньше, чем у видимого света, то они способны разрешать структуры препарата размерами около 0,1мкм. Ультрафиолетовая микроскопия имеет еще одно преимущество — с ее помощью можно исследовать неокрашенные препараты. Большинство биологических объектов прозрачны в видимом свете, так как не поглощают его. Однако они обладают избирательным поглощением в ультрафиолетовой области и, следовательно, легко различимы в ультрафиолетовых лучах.

Наибольшая разрешающая способность у электронного микроскопа, так как длина волны при движении электрона в 1000 раз меньше длины световой волны.

Полезное увеличение микроскопа ограничено его разрешающей способностью и разрешающей способностью глаза.

Разрешающая способность глаза характеризуется наименьшим углом зрения, при котором человеческий глаз еще различает раздельно две точки предмета. Она лимитируется дифракцией на зрачке и расстоянием между светочувствительными клетками сетчатки. Для нормального глаза наименьший угол зрения равен 1 минуте. Если предмет находится на расстоянии наилучшего зрения — 25 см, то этот угол соответствует предмету размером 70 мкм. Данную величину считают пределом разрешения невооруженного глаза Zr на расстоянии наилучшего зрения. Однако показано, что оптимальная величина Zr равна 140-280 мкм. При этом глаз испытывает наименьшее напряжение.

Полезным увеличением микроскопа называют его максимальное увеличение, при котором глаз еще в состоянии различать детали, равные по величине пределу разрешения микроскопа.

Линейное увеличение микроскопа равно отношению величины изображения предмета, расположенного на расстоянии наилучшего зрения, к величине самого предмета ( см. формулу 1). Если за размер предмета примем предел разрешения микроскопа Z, а за размер изображения — предел разрешения невооруженного глаза на расстоянии наилучшего зрения Zr, то получим формулу полезного увеличения микроскопа:

. (10)

Подставляя в эту формулу Z из выражения (9), получим

. (11)

Подставив в формулу (11) длину волны света 555 нм (555×10 -9 м), оптимальные величины пределов разрешения глаза 140-280 мкм (140-280×10 -6 м), найдем интервал значений полезного увеличения микроскопа

Последнее изменение этой страницы: 2016-06-26; Нарушение авторского права страницы

источник

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9

Лит.: , Трофика клетки, М, 1966; Введение в количественную цитохимию, пер. с англ., М., 1969; Gaspersson Т., Cell growth and cell function, N. Y., 1950.

микроскопические биологические объекты можно разделить на амплитудные и фазовые.

К первым (амплитудным) относятся поглощающие свет окрашенные препараты (ткани, клетки, микробы), которые можно наблюдать с помощью обычной световой микроскопии. При прохождении света через окрашенные участки препарата амплитуда световой волны уменьшается и эти участки видны как более темные, по сравнению с соседними неокрашенными участками.

Читайте также:  Чем полезно масло лимона

Ко вторым (фазовым) — такие же, но неокрашенные, не поглощающие света объекты, структуры которых различаются по показателю преломления, а сами объекты отличаются от окружающей среды толщиной и показателем преломления. После прохождения света через эти объекты, амплитуда световой волны не изменяется, а изменяется фаза. На приведенной динамической схеме показаны изменения амплитуды световой волны при прохождении через окрашенный объект и фазы — через неокрашенный. Наш глаз различает изменения амплитуды световой волны (различие в поглощении света), но не различает изменений фазы световой волны (различий в преломлении света). Поэтому для наблюдения в микроскопе этих объектов, Цернике предложил способ перевода фазовых различий в амплитудные. Этот способ в микроскопии называется фазово-контрастным и широко используется в настоящее время для наблюдения живых, неокрашенных биологических объектов. Объекты сильно рассеивающие свет можно наблюдать с помощью темнопольной микроскопии

Качество изображения определяется разрешающей способностью микроскопа, т. е. минимальным расстоянием, на котором оптика микроскопа может различить раздельно две близко расположенные точки, разрешающая способность зависит от числовой апертуры объектива, конденсора и длины волны света, которым освещается препарат. Числовая апертура(раскрытие) зависит от угловой апертуры и показателя преломления среды, находящейся между фронтальной линзой объектива и конденсора и препаратом.

Угловая апертура объектива — это максимальный угол (АОВ), под которым: могут попадать в
объектив лучи, прошедшие через препарат.

Числовая апертура объектива равна произведению синуса половины угловой апертуры на показатель преломления среды, находящейся между предметным: стеклом и фронтальной линзой объектива.

где, N. A. — Числовая апертура; n — показатель преломления среды между препаратом и объективом;

sina — синус угла а равного половине угла АОВ на схеме.

Таким образом, апертура сухих систем (между фронтальной линзой объектива и препаратом-воздух) не может быть более 1 (обычно не более 0,95).

Среда, помещаемая между препаратом и объективом, называется иммерсионной жидкостью или иммерсией, а объектив, рассчитанный для работы с иммерсионной жидкостью называют иммерсионным. Благодаря иммерсии с более высоким показателем преломления чем у воздуха, можно повысить числовую апертуру объектива и, следовательно, разрешающую способность.

Числовая апертура объективов всегда гравируется на их оправах. Разрешающая способность микроскопа зависит также от апертуры конденсора. Если считать апертуру конденсора равной апертуре объектива, то формула разрешающей способности имеет следующий вид:

где R — предел разрешения; l — длина волны; N. A — числовая апертура. Из этой формулы видно, что при наблюдении в видимом свете (зеленый участок спектра — l=550нм), разрешающая способность (предел разрешения) микроскопа не может быть >

Пути повышения оптической разрешающей способности:

1. Выбор большого угла светового конуса как со стороны объектива, так и со стороны
источника освещения. Благодаря этому возможно собрать в объективе более
преломленные лучи света от очень тонких структур. Таким образом, первый путь
повышения разрешения это использование конденсора, числовая апертура
которого соответствует числовой апертуре объектива.

2. Второй способ — использование иммерсионной жидкости между фронтальной
линзой объектива и покровным стеклом. Так мы воздействуем на показатель
преломления среды n, описанный в первой формуле. Его оптимальное значение,
рекомендуемое для иммерсионных жидкостей, составляет 1.51.

Увеличение микроскопа зависит от увеличения объектива, окуляра, промежуточных линз и длины тубуса. Приблизительно определить увеличение микроскопа можно, умножая увеличение объектива на увеличение окуляра и увеличение промежуточных линз (если они предусмотрены в конструкции микроскопа). Для точного определения увеличения микроскопа используют объект-микрометр и окуляр-микрометр.

Различают полезное и бесполезное увеличение, зависящее от увеличения окуляра. Полезное увеличение обычно равно числовой апертуре объектива, увеличенной в 500-1000 раз. Более высокое окулярное увеличение не выявляет новых деталей и является бесполезным. В зависимости от среды, которая находится между фронтальной линзой объектива и препаратом, различают «сухие» объективы малого и среднего увеличения (до 40х) и иммерсионные с максимальной апертурой и увеличением (до 90-100х) (см. таблицу).

Разрешающая способность, мкм

Полезное увеличение 1000x(N. A.)

«Сухие» объективы малого увеличения

«Сухие» объективы среднего увеличения

Иммерсионные жидкости необходимы для увеличения числовой апертуры и соответственно повышения разрешающей способности иммерсионных объективов, специально рассчитанных для работы с этими жидкостями и, соответствующим образом, маркированными. Иммерсионные жидкости, помещенные между объективом и препаратом, имеют более высокий показатель преломления, чем воздух. Поэтому, отклоненные мельчайшими деталями объекта лучи света, не рассеиваются, выходя из препарата, и попадают в объектив, что приводит к повышению разрешающей способности.

Существуют объективы водной иммерсии (маркированные белым кольцом), масляной иммерсии (черное кольцо), глицериновой иммерсии (желтое кольцо), монобромнафталиновой иммерсии (красное кольцо). В световой микроскопии

биологических препаратов применяются объективы водной и масляной иммерсии. Специальные кварцевые объективы глицериновой иммерсии пропускают коротковолновое ультрафиолетовое излучение и предназначены для ультрафиолетовой (не путать с люминесцентной) микроскопии (то есть для изучения биологических объектов, избирательно

поглощающих ультрафиолетовые лучи). Объективы монобромнафталиновой иммерсии в микроскопии биологических объектов не используются. В качестве иммерсионной жидкости для объектива водной иммерсии используется дистиллированная вода, масляной иммерсии — природное (кедровое) или синтетическое масло с определенным показателем преломления.

В отличие от других иммерсионных жидкостей масляная иммерсия является гомогенной,
так как имеет показатель преломления равный или очень близкий показателю преломления
стекла. Обычно этот показатель преломления (n) рассчитан для определенной спектральной
линии и определенной температуры и указывается на флаконе с маслом. Так, например,
показатель преломления иммерсионного масла для работы с покровным стеклом для
спектральной линии D в спектре натрия при температуре =20 0С равен 1,515 (nD 20 = 1,515 ),
для работы без покровного стекла (nD 20=1,520).

Для работы с объективами-апохроматами нормируется также дисперсия, то есть разность
показателей преломления для различных линий спектра.

Использование синтетического иммерсионного масла предпочтительнее, поскольку его
параметры более точно нормируются, и оно в отличие от кедрового, не засыхает на
поверхности фронтальной линзы объектива.

Учитывая, вышесказанное, ни в коем случае нельзя пользоваться суррогатами иммерсионного масла и, в частности, вазелиновым маслом. При некоторых способах микроскопии для: увеличения апертуры конденсора, иммерсионная жидкость (чаще дистиллированная вода) помещается между конденсором и препаратом.

И. с. применяются в микроскопах. В качестве иммерсионных жидкостей применяют кедровое или минеральное масло (показатель преломления 1,515); водный раствор глицерина (1,434); воду (1,333); монобромнафталин (1,656); вазелиновое масло (1,503); йодистый метилен (1,741). Оптические характеристики иммерсионной жидкости (показатель преломления и дисперсия) входят в расчёт И. с., поэтому И. с. можно применять только с той жидкостью, на которую система рассчитана. В противном случае резко ухудшится качество изображения. Включение объектива в состав И. с. даёт возможность повысить его апертуру А, а следовательно, и разрешающую способность микроскопа. «Сухая» система не может иметь А > 1, у масляных И. с. А достигает 1,3, у монобромнафталиновой — — 1,6. В И. с. уменьшается рассеяние света и тем самым увеличивается контраст изображения. Это особенно важно при исслеловании слабо отражающих объектов.

источник

Микроскоп предназначен для наблюдения мелких объектов с большим увеличением и с большей разрешающей способностью, чем дает лупа. Оптическая система микроскопа состоит из двух частей: объектива и окуляра. Объектив микроскопа образует действительное увеличенное обратное изображение предмета в передней фокальной плоскости окуляра. Окуляр действует как лупа и образует мнимое изображение на расстоянии наилучшего видения. По отношению ко всему микроскопу рассматриваемый предмет располагается в передней фокальной плоскости.

Оптическая схема микроскопа.

Действие микрообъектива характеризуют его линейным увеличением: Vоб=-Δ/F\’об * F\’об — фокусное расстояние микрообъектива * Δ — расстояние между задним фокусом объектива и передним фокусом окуляра, называемое оптическим интервалом или оптической длиной тубуса.

Изображение, создаваемое объективом микроскопа в передней фокальной плоскости окуляра рассматривается через окуляр, который действует как лупа с видимым увеличением:

Общее увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра: G=Vоб*Gок

Если известно фокусное расстояние всего микроскопа, то его видимое увеличение можно определить так же, как и у лупы:

Как правило, увеличение современных объективов микроскопов стандартизованное и составляет ряд чисел: 10, 20, 40, 60, 90, 100 крат. Увеличения окуляров тоже имеют вполне определенные значения, например 10, 20, 30 крат. Во всех современных микроскопах имеется комплект объективов и окуляров, которые специально рассчитываются и изготавливаются так, что подходят друг к другу, поэтому их можно комбинировать для получения разных увеличений.

Поле зрения микроскопа зависит от углового поля окуляра ω, в пределах которого получается изображение достаточно хорошего качества: 2y=500*tg(ω)/G * G — увеличение микроскопа

При данном угловом поле окуляра линейное поле микроскопа в пространстве предметов тем меньше, чем больше его видимое увеличение.

Диаметр выходного зрачка микроскопа вычисляется следующим образом:
где A – передняя апертура микроскопа.

Диаметр выходного зрачка микроскопа обычно немного меньше диаметра зрачка глаза (0.5 – 1 мм).

При наблюдении в микроскоп зрачок глаза нужно совмещать с выходным зрачком микроскопа.

Одной из важнейших характеристик микроскопа является его разрешающая способность. Согласно дифракционной теории Аббе, линейный предел разрешения микроскопа, то есть минимальное расстояние между точками предмета, которые изображаются как раздельные, зависит от длины волны и числовой апертуры микроскопа:
Предельно достижимую разрешающую способность оптического микроскопа можно сосчитать, исходя из выражения для апертуры микроскопа . Если учесть, что максимально возможное значение синуса угла – единичное , то для средней длины волны можно вычислить разрешающую способность микроскопа:

Повысить разрешающую способность микроскопа можно двумя способами: * Увеличивая апертуру объектива, * Уменьшая длину волны света.

Для того чтобы увеличить апертуру объектива, пространство между рассматриваемым предметом и объективом заполняется так называемой иммерсионной жидкостью – прозрачным веществом с показателем преломления больше единицы. В качестве такой жидкости используют воду , кедровое масло , раствор глицерина и другие вещества. Апертуры иммерсионных объективов большого увеличения достигают величины , тогда предельно достижимая разрешающая способность иммерсионного оптического микроскопа составит.

Для увеличения разрешающей способности микроскопа вторым способом применяются ультрафиолетовые лучи, длина волны которых меньше, чем у видимых лучей. При этом должна быть использована специальная оптика, прозрачная для ультрафиолетового света. Поскольку человеческий глаз не воспринимает ультрафиолетовое излучение, необходимо либо прибегнуть к средствам, преобразующим невидимое ультрафиолетовое изображение в видимое, либо фотографировать изображение в ультрафиолетовых лучах. При длине волны разрешающая способность микроскопа составит.

Кроме повышения разрешающей способности, у метода наблюдения в ультрафиолетовом свете есть и другие преимущества. Обычно живые объекты прозрачны в видимой области спектра, и поэтому перед наблюдением их предварительно окрашивают. Но некоторые объекты (нуклеиновые кислоты, белки) имеют избирательное поглощение в ультрафиолетовой области спектра, благодаря чему они могут быть «видимы» в ультрафиолетовом свете без окрашивания.

Квалифицированные специалисты в области микроскопии, всегда готовы предоставить Вам исчерпывающую информацию о нашем оборудовании.

Вся предоставленная на сайте информация, касающаяся комплектации, характеристик, а также стоимости продукции, носит информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437(2) Гражданского кодекса Российской Федерации.

источник

Колебания и волны. Звук. Ультразвук. Колебания. Гармонические колебания. Характеристики колебаний амплитуда, период, частота, циклическая частота, фаза

Название Колебания и волны. Звук. Ультразвук. Колебания. Гармонические колебания. Характеристики колебаний амплитуда, период, частота, циклическая частота, фаза
Анкор voprosy_fizika2.doc
Дата 24.04.2017
Размер 1.35 Mb.
Формат файла
Имя файла voprosy_fizika2.doc
Тип Документы
#2858
страница 3 из 8

22. Оптический микроскоп. Ход лучей в микроскопе. Полезное увеличение микроскопа.

Микроскоп — оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом.

Микроскоп применяют для получения больших увеличений при наблюдении мелких предметов. Увеличенное изображение предмета в микроскопе получается с помощью оптической системы, состоящей из двух короткофокусных линз — объектива O1 и окуляра O2. Объектив даст действительное перевернутое увеличенное изображение предмета. Это промежуточное изображение рассматривается глазом через окуляр, действие которого аналогично действию лупы. То есть изображение в микроскопе получается перевернутым. Окуляр располагают так, чтобы промежуточное изображение находилось в его фокальной плоскости; в этом случае лучи от каждой точки предмета распространяются после окуляра параллельным пучком.


Полезное увеличение микроскопа — такое увеличение, при котором предмет, имеющий размер, равный пределу разрешения микроскопа, имеет изображение, размер которого равен пределу разрешения глаза.

Полезное увеличение микроскопа находится в области 500 — 1000-кратной величины апертуры объектива. Нормальным увеличением микроскопа называется такое, которое получается при 500 А и диаметре зрачка выхода, равном 1 мм.

Полезное увеличение микроскопа в среднем равно 1000-кратному.

Полезное увеличение микроскопа определяется увеличением объектива, поэтому на совершенствование объективов обращается серьезное внимание.

Полезное увеличение N микроскопа должно быть подобрано так, чтобы при этом была рациональным образом использована разрешающая сила объектива микроскопа. Для этого необходимо, чтобы угловая величина изображения наблюдаемой детали по отношению к центру зрачка глаза была бы не меньше 2 минут, а еще лучше, как принято считать, доходила бы до 4 минут, что обусловлено разрешающей способностью глаза.
23. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.

Одной из важнейших характеристик микроскопа является его разрешающая способность. Разрешение — способность оптического прибора воспроизводить изображение близко расположенных объектов. Линейный предел разрешения микроскопа, то есть минимальное расстояние между точками предмета, которые изображаются как раздельные, зависит от длины волны и числовой апертуры микроскопа:

Апертура — характеристика оптического прибора, описывающая его способность собирать свет и противостоять дифракционному размытию деталей изображения.

A = nSin(α/2), где n — показатель преломления той среды, в которой находится предмет и из которой исходят лучи, а α — угол, составляемый крайними лучами, идущими из предмета и попадающими еще в объектив.

Повысить разрешающую способность микроскопа можно двумя способами: либо увеличивая апертуру объектива, либо уменьшая длину волны света, освещающего препарат.
24.Специальные методы микроскопии: метод темного поля, поляризационный, люминесцентный микроскоп.

Метод исследования в темном поле впервые был предложен австрийскими

учеными Р. Зигмонди и Р. Зидентопфом в 1903 году и подходит для

рассеивающих свет объектов.

В основе метода лежит освещение препарата полым конусом света,

внутренняя апертура которого превосходит числовую апертуру применяемого

объектива. Поскольку ни один прямой луч от

отсутствии объекта поле зрения микроскопа

будет темным. Объект, помещенный на

предметный столик, будет рассеивать свет во

все стороны, в том числе и в сторону объектива,

благодаря чему на темном фоне будет видно

контрастное изображение объекта.

В микроскопе проходящего света тип

освещения создается посредством кольцевой

диафрагмы в конденсоре (рис. 8). В случае,

когда в исследованиях используется объектив с

высокой числовой апертурой, есть вероятность,

что часть света все же будет попадать объектив.

По этой причине используются

специализированные объективы, имеющие

встроенную внутреннюю ирисовую диафрагму,

которая позволяет уменьшать эффективное значение NAobj до величины,

достаточной для наблюдения в темном поле.

Поляризационная микроскопия – это метод наблюдения в поляризованном свете для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов). Таковыми являются многие минералы, зёрна в шлифах сплавов, некоторые животные и растительные ткани и пр. Оптические свойства анизотропных микрообъектов различны в различных направлениях и проявляются по-разному в зависимости от ориентации этих объектов относительно направления наблюдения и плоскости поляризации света, падающего на них. Наблюдение можно проводить как в проходящем, так и в отражённом свете. Свет, излучаемый осветителем, пропускают через поляризатор. Сообщенная ему при этом поляризация меняется при последующем прохождении света через препарат (или отражении от него). Эти изменения изучаются с помощью анализатора и различных оптических компенсаторов. Анализируя такие изменения, можно судить об основных оптических характеристиках анизотропных микрообъектов: силе двойного лучепреломления, количестве оптических осей и их ориентации, вращении плоскости поляризации, дихроизме.

Метод исследования в свете люминесценции (люминесцентная микроскопия, или флуоресцентная микроскопия) состоит в наблюдении под микроскопом зелено-оранжевого свечения микрообъектов, которое возникает при их освещении сине-фиолетовым светом или не видимыми глазом ультрафиолетовыми лучами. В оптическую схему микроскопа вводятся два светофильтра. Один из них помещают перед конденсором. Он пропускает от источника-осветителя излучение только тех длин волн, которые возбуждают люминесценцию либо самого объекта (собственная люминесценция), либо специальных красителей, введённых в препарат и поглощённых его частицами (вторичная люминесценция). Второй светофильтр, который установлен после объектива, пропускает к глазу наблюдателя (или на фоточувствительный слой) только свет люминесценции. В люминесцентной микроскопии используют освещение препаратов как сверху (через объектив, который в этом случае служит и конденсором), так и снизу, через обычный конденсор. Наблюдение при освещении сверху иногда называют «люминесцентной микроскопией в отражённом свете» (этот термин условен — возбуждение свечения препарата не является простым отражением света). Его часто используют совместно с наблюдением по фазово-контрастному методу в проходящем свете. Метод нашел широкое применение в микробиологии, вирусологии, гистологии, цитологии, в пищевой промышленности, при исследовании почв, в микрохимическом анализе, в дефектоскопии. Такое многообразие применений объясняется очень высокой цветовой чувствительностью глаза и высокой контрастностью изображения самосветящегося объекта на тёмном нелюминесцирующем фоне. Кроме того, информация о составе и свойствах исследуемых веществ, которую можно получить, зная интенсивность и спектральный состав их люминесцентного излучения, имеет огромную ценность.
Тепловое излучение.

25.Тепловое излучение. Распределение энергии в спектре излучения абсолютно черного тела. Квантовая гипотеза Макса Планка.

Тепловое излучение — это электромагнитное излучение нагретых тел. Непосредственные излучатели – частицы, образующие тело (атомы, молекулы, ионы). В основном приходится на инфракрасный участок спектра, т.е на длины волн от 0,74 мкм до 1000 мкм. Отличительной особенностью является то, что оно может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме.

Примером теплового излучения является свет от лампы накаливания.

Абсолютное черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение.
Изучение распределения энергии в спектре теплового излучения абсолютно черного тела при различных температурах привело к установлению следующих закономерностей:

1)спектр излучения абсолютно черного тела является сплошным, т. е. в спектре представлен непрерывный ряд длин волн;

2)распределение энергии в спектре излучения зависит от длины волны. С увеличением длины волны спектральная плотность энергетической светимости увеличивается, достигает отчетливо выраженного максимума при некоторой длине волны, затем уменьшается;

3)с повышением температуры максимум излучения смещается в сторону более коротких волн. Уменьшение в сторону более коротких волн выражено более резко, чем в сторону более длинных.

Нагретое тело испускает и поглощает свет не непрерывно, а определенными конечными порциями энергии – квантами (квант (от лат. quantum) – количество).

Энергия каждой порции прямо пропорциональна частоте излучения.

универсальная Планка (h) – постоянная универсальная величина. Формула Макса Планка позволяет определять различные характеристики квантов электромагнитного изучения.
26. Законы теплового излучения.

Основные законы теплового излучения

Закон смещения Вина
1)В 1879 г. Й. Стефан экспериментально, а в 1884 г. Л. Больцман теоретически определили энергетическую светимостьабсолютно черного тела.

Закон Стефана-Больцмана — энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры:

3)Немецкий физик В. Вин (1893) установил формулу для длины волны, на которую приходится максимум испускательной способности абсолютно черного тела. Соотношение, которое он получил, было названо его именем.

Закон смещения Вина даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела λmax=0,0028999/T

где T — температура в кельвинах, а λmax — длина волны с максимальной интенсивностью в метрах.

2)Закон излучения Кирхгофа — физический закон, установленный немецким физиком Кирхгофом в 1859 году.

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела aω,T. С другой стороны, каждое нагретое тело излучает энергию по некоторому закону rω,T, именуемым излучательной способностью тела.

Величины aω,T и rω,T могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него aω,T=1 . Поэтому функция fω,T совпадает с излучательной способностью абсолютно чёрного тела, описываемой законом Стефана — Больцмана, вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

3)Закон смещения Вина даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела λmax=0,0028999/T

где T — температура в кельвинах, а λmax — длина волны с максимальной интенсивностью в метрах.

27. Физиологические основы термографии.= 29. Медицинская термография.

Термография — диагностический метод, основанный на измерении и регистрации теплового излучения поверхности тела человека или его отдельных участков.

Физиологической основой термографии является увеличение интенсивности инфракрасного излучения над патологическими очагами.

Термографический метод облегчает дифференциальный диагноз между доброкачественными и злокачественными опухолями. Этот метод является объективным средством контроля за эффективностью терапевтических методов лечения. Так, при термографическом обследовании больных псориазом было установлено, что при наличии выраженной инфильтрации и гиперемии в бляшках отмечается повышение температуры. Снижение температуры до уровня окружающих участков в большинстве случаев свидетельствует о регрессии процесса на коже.

Повышенная температура часто является показателем инфекции. Чтобы определить температуру человека, достаточно взглянуть через инфракрасное устройство на его лицо и шею. Для здоровых людей отношение температуры лба к температуре в области сонной артерии лежит в диапазоне от 0,98 до 1,03. Это отношение и можно использовать при экспресс-диагностике во время эпидемий для проведения карантинных мероприятий.

28. Способы преобразования изображений.

фотоматериалы, жидкие кристаллы, электронно-оптические преобразователи.

Распределение температуры на небольшом участке поверхности тела можно определить с помощью специальных жидкокристаллических пленок. Такие пленки чувствительны к небольшим изменениям температуры (меняют цвет). Поэтому на пленке возникает цветной тепловой «портрет» участка тела, на который она наложена.

Более совершенный способ состоит в использовании тепловизоров, преобразующих инфракрасное излучение в видимый свет. Излучение тела с помощью специального объектива проецируется на матрицу тепловизора. После преобразования на экране формируется детальный тепловой портрет. Участки с различными температурами отличаются цветом или интенсивностью. Современные методы позволяют фиксировать различие в температурах до 0,2 градуса.

Тепловые портреты используются в функциональной диагностике. Различные патологии внутренних органов могут образовывать на поверхности кожные зоны с измененной температурой. Обнаружение таких зон указывает на наличие патологии.

15. Инфракрасное излучение. Тепловидение. Методы получения изображений в тепловидении: фотоматериалы, жидкие кристаллы, электронно-оптические преобразователи.
Инфракрасное излучение — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения.

Тепловидение — метод регистрации инфракрасного (теплового) излучения. При этом тепловой образ человека отражается на экране специального прибора — тепловизора. Метод используется для выявления локальных изменений температуры тела. Это бывает полезно при диагностике местных заболеваний кожи, а также при диагностике заболеваний некоторых внутренних органов, например, аппендикса, желчного пузыря и др.

Сначала с помощью оптико-механической сканирующей системы отдельные точки объекта попеременно проецировались на приёмник, а полученные с него электрические сигналы подавались на вход электроннолучевой трубки, аналогичной приёмной телевизионной трубке. На люминесцентном экране трубки формировалось видимое изображение объекта.

Позже были созданы новые устройства. В них тепловое изображение объекта непосредственно (без промежуточного преобразования инфракрасного излучения в электрические сигналы) проецируется на экран, покрытый тонким слоем вещества, которое в результате какого-либо физико-химического процесса, происходящего при его нагреве, изменяет свои оптические характеристики (коэффициент отражения или пропускания видимого света, интенсивность или цвет собственного свечения и т. д.). На экранах таких устройств можно наблюдать видимые изображения объектов и фотографировать их. В качестве температурно-чувствительных веществ используют Жидкие кристаллы. Жидкие кристаллы — это фазовое состояние, в которое переходят некоторые вещества при определенных условиях (температура, давление, концентрация в растворе). Жидкие кристаллы обладают одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия

Электронно-оптический преобразователь — это вакуумный фотоэлектронный прибор для преобразования невидимого глазом изображения объекта (в инфракрасном, ультрафиолетовом или рентгеновском спектре) в видимое либо для усиления яркости видимого изображения. В ЭОП оптическое или рентгеновское изображение преобразуется с помощью фотокатода в электронное, а электронное — в видимое, получаемое на катодолюминесцентном экране.

источник

Источники:
  • http://www.biomed-russia.ru/doc/content/microscope
  • http://studopedia.ru/5_79377_razreshayushchaya-sposobnost-i-uvelichenie-mikroskopa.html
  • http://studfiles.net/preview/2907475/page:12/
  • http://infopedia.su/7x137a.html
  • http://pandia.ru/text/80/138/26379-7.php
  • http://www.biomed-russia.ru/doc/content/microscope
  • http://topuch.ru/kolebaniya-i-volni-zvuk-uletrazvuk-kolebaniya-garmonicheskie-k/index3.html