Меню Рубрики

Полезная работа в термодинамике

«Физика — 10 класс»

В результате каких процессов может изменяться внутренняя энергия?
Как определяется работа в механике?

Работа в механике и термодинамике.

В механике работа определяется как произведение модуля силы, модуля перемещения точки её приложения и косинуса угла между векторами силы и перемещения. При действии силы на движущееся тело работа этой силы равна изменению его кинетической энергии.

Работа в термодинамике определяется так же, как и в механике, но она равна не изменению кинетической энергии тела, а изменению его внутренней энергии.

Изменение внутренней энергии при совершении работы.

Почему при сжатии или расширении тела меняется его внутренняя энергия? Почему, в частности, нагревается воздух при накачивании велосипедной шины?

Причина изменения температуры газа в процессе его сжатия состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия.

При сжатии или расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Так, при движении навстречу молекулам газа поршень во время столкновений передаёт им часть своей механической энергии, в результате чего увеличивается внутренняя энергия газа и он нагревается. Поршень действует подобно футболисту, встречающему летящий на него мяч ударом ноги. Нога футболиста сообщает мячу скорость, значительно большую той, которой он обладал до удара.

И наоборот, если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует и футболист, для того чтобы уменьшить скорость летящего мяча или остановить его, — нога футболиста движется от мяча, как бы уступая ему дорогу.

Вычислим работу силы Если газ сжимается, то формула (13.3) для работы газа остаётся справедливой. Но теперь V2

Геометрическое истолкование работы. Работе А’ газа для случая постоянного давления можно дать простое геометрическое истолкование.

При постоянном давлении график зависимости давления газа от занимаемого им объёма — прямая, параллельная оси абсцисс (рис. 13.2). Очевидно, что площадь прямоугольника abdc, ограниченная графиком рх = const, осью V и отрезками аb и cd, равными давлению газа, численно равна работе, определяемой формулой (13.3):

В общем случае давление газа не остаётся неизменным. Например, при изотермическом процессе оно убывает обратно пропорционально объёму (рис. 13.3). В этом случае для вычисления работы нужно разделить общее изменение объёма на малые части и вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему численно равна площади фигуры, ограниченной графиком зависимости р от V, осью V и отрезками аb и cd, длина которых численно равна давлениям p1 р2 в начальном и конечном состояниях газа.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

источник

Если бесконечно малое расширение системы за счет подвода к ней теплоты, происходит во внешней среде, находящейся повсюду под одним и тем же давлением Р, то увеличение объема системы V на бесконечно малую величину dV сопровождается работой:

, (*)

которую совершает система над окружающей средой и называемой работой изменения объема (механическая работа).

При изменении объема тела от значения объема до значения работа, совершаемая системой, будет равняться:

Из формулы (*) следует, что и всегда имеют одинаковые знаки:

— если , то и , т.е. при расширении работа тела положительна, при этом тело само совершает работу;

— если же , то и , т. е. при сжатии работа тела отрицательна: это означает, что не тело совершает работу, а на его сжатие затрачивается работа извне.

Теперь, рассмотрим работу, которая производится системой над каким- либо внешним объектом. Пусть рассматриваемое тело представляет собой газ, находящийся в цилиндре под поршнем. Поршень сверху нагружен грузом.

В результате подвода теплоты к газу произошло его расширение от объема до объема . При этом поршень с грузом переместился с высоты на высоту .

В результате расширения телом совершена работа:

а потенциальная энергия груза увеличилась на величину:

Разность между работой расширения и приращением потенциальной энергии представляет собой полезную внешнюю работу (располагаемую или техническую работу) которая произведена телом над внешним объектом:

В термодинамике широко используют -диаграмму. Поскольку состояние термодинамической системы определяется двумя параметрами, то на -диаграмме оно изображается точкой. На рисунке точка 1 соответствует начальному состоянию системы, точка 2 -конечному, а линия 1-2 соответствует процессу расширения рабочего тела от до .

Механическая работа графически изображается на плоскости площадью, заключенной между кривой процесса и осью объемов.

Располагаемая работа графически изображается на плоскости площадью, заключенной между кривой процесса и осью давлений.

Работа зависит от характера термодинамического процесса.

Первый закон термодинамики.

Первый закон термодинамики представляет собой закон сохранения и превращения энергии.

Для термодинамических процессов закон устанавливает взаимосвязь между теплотой, работой и изменением внутренней энергии термодинамической системы.

Формулировка первого закона термодинамики:

Теплота, подведенная к системе, расходуется на изменение энергии системы и совершение механической работы.

Для 1кг вещества уравнение первого закона термодинамики имеет вид:

Первый закон термодинамики может быть записан также в другой форме.

Учитывая то, что энтальпия равна:

(*)

Выразим из выражения изменение внутренней энергии:

и подставим ее в уравнение первого закона термодинамики

До сих пор мы рассматривали только системы, вещество в которых не перемещалось в пространстве. Однако следует отметить, что первый закон термодинамики имеет общий характер и справедлив для любых термодинамических систем- и неподвижных и движущихся.

Предположим, что рабочее тело подается в тепломеханический агрегат (например, лопатки турбины). Рабочее тело совершает техническую работу, например, приводя в движение ротор турбины, а затем удаляется через выхлопной патрубок.

Запишем первый закон термодинамики для неподвижной системы:

Работа расширения совершается рабочим телом на поверхностях, ограничивающих выделенный движущийся объем, т. е. на стенках агрегата. Часть стенок агрегата неподвижна, и работа расширения на них равна нулю. Другая часть стенок специально делается подвижной (рабочие лопатки в турбине), и рабочее тело совершает на них техническую работу .

При входе рабочего в агрегат и выходе его из агрегата затрачивается так называемая работа вытеснения:

Часть работы расширения () затрачивается на увеличение кинетической энергии рабочего тела в потоке, равное .

Подставив данное выражение механической работы в уравнение первого закона термодинамики, получим:

Поскольку энтальпия равна:

Окончательный вид первого закона термодинамики для движущегося потока будет иметь вид:

Теплота, подведенная к потоку рабочего тела, расходуется на увеличение энтальпии рабочего тела, производство технической работы и увеличение кинетической энергии потока.

Второй закон термодинамики.

Первый закон термодинамики утверждает, что теплота может превращаться в работу, а работа в теплоту. Работа может быть полностью превращена в теплоту, например, путем трения, однако теплоту полностью превратить в работу в периодически повторяющемся (непрерывном) процессе нельзя.

Первый закон термодинамики “позволяет” создать тепловой двигатель полностью превращающий подведенную теплоту в работу L, т.е.:

Второй закон накладывает более жесткие ограничения и утверждает, что работа должна быть меньше подведенной теплоты () на величину отведенной теплоты , т.е.:

Вечный двигатель можно осуществить, если теплоту передать от холодного источника к горячему. Но для этого теплота самопроизвольно должна перейти от холодного тела к горячему, что невозможно.

Теплота сама собой может переходить только от более нагретых тел к холодным. Переход теплоты от холодных тел к нагретым сам собой не происходит. Для этого нужно затратить дополнительную энергию.

Таким образом, для полного анализа явления и процессов необходимо иметь кроме первого закона термодинамики еще дополнительную закономерность. Этим законом является второй закон термодинамики. Он устанавливает, возможен или невозможен тот или иной процесс, в каком направлении протекает процесс, когда достигается термодинамическое равновесие и при каких условиях можно получить максимальную работу. Одна из формулировок второго закона термодинамики:

Для существования теплового двигателя необходимы 2 источника —горячий источник и холодный источник(окружающая среда).

Дата добавления: 2014-10-31 ; Просмотров: 2077 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Изменение энтропии определяет направление и предел течения самопроизвольных процессов для изолированных систем, то есть для систем, внутренняя энергия и объем которых постоянны, или для систем, в которых постоянны энтальпия и давление.

Рассмотрим изотермические процессы.

1 Направление и предел течения самопроизвольных процессов для систем, находящихся при постоянных температуре и объеме (T=constV=const.), определяет изохорно — изотермический потенциал (изохорный потенциал) или энергия Гельмгольца:

, (25)

где U – внутренняя энергия системы, S – энтропия системы, T – абсолютная температура.

Изохорно-изотермический потенциал является функцией состояния, его изменение при переходе системы из состояния 1 в состояние 2 определяется разностью значений в конечном и начальном состояниях .

При переходе из состояния 1 в состояние 2 термодинамическая система выполнит максимальную работу, если этот переход является обратимым процессом.

Согласно первому закону термодинамики , следовательно, работа . Согласно второму закону термодинамики из уравнения (19) для обратимого процесса .

Следовательно, при переходе из состояния 1 в состояние 2 система совершит работу

.

Функцию Fназывают свободной энергией при постоянном объеме. Свободная энергия – это та часть внутренней энергии процесса, которая может быть полностью превращена в работу. Эту работу ( ) называют максимальной работой в изотермическом процессе. Ту часть внутренней энергии, которая не превращается в работу, ( ) называют связанной энергией. С ростом энтропии системы ее связанная энергия возрастает.

Так как необратимые процессы сопровождаются возрастанием энтропии системы, величина связанной энергии будет увеличиваться, а величина свободной энергии — уменьшаться. Следовательно, процесс протекает самопроизвольно, если ΔF 0, то самопроизвольно процесс протекать не может. Если ΔF=0, то система находится в равновесии.

Таким образом, в системах, находящихся при постоянных температуре и объеме (T=const. и V=const.), самопроизвольно могут протекать только те процессы, которые сопровождаются уменьшением изохорно-изотермического потенциала F.

Причем, пределом их протекания, то есть условием равновесия, является достижение некоторого минимального для данных условий значения функции F, то есть условие

.

2 Направление и предел самопроизвольного протекания процесса для систем, находящихся при постоянных давлении и температуре (p=constT=const.), определяет изобарно-изотермический потенциал (изобарный потенциал) или энергия Гиббса:

, (26)

где Н – внутренняя энергия системы, S – энтропия системы, T – абсолютная температура.

Так как , то .

Изменение изобарно-изотермического потенциала для любого процесса

; (27)

для изобарного процесса (p=const.)

; (28)

для всякого изотермического процесса (T=const.)

. (29)

Максимально полезной работой изотермического процесса называют величину

. (30)

Так как и , то

, (31)

то есть максимальная полезная работа изотермического процесса равна максимальной работе за вычетом работы против внешнего давления.

Таким образом, в системах, находящихся при постоянных температуре и давлении (T=const. и р=const.), самопроизвольно могут протекать только те процессы, которые сопровождаются уменьшением изобарно-изотермического потенциала G.

Причем, пределом их протекания, то есть условием равновесия, является достижение некоторого минимального для данных условий значения функции G, то есть условие

.

Таким образом, для оценки хода любого термодинамического процесса существует определенная характеристическая функция (G, F, U, H, S), изменение которой определяет характер течения данного процесса.

Выбрать функцию, которая является характеристической для процесса, протекающего при двух постоянных термодинамических параметрах, можно из рисунка 5.

Рис. 5. Схема выбора характеристической функции процесса

При T=constV=const. характеристической функцией является изохорно-изотермический потенциал F.

При T=const. и р=const. – изобарно-изотермический потенциал G.

Изобарные процессы (р=const.) характеризует энтальпия Н.

Изохорные (V=const.) – внутренняя энергия U.

Термодинамические процессы (химические реакции) будут протекать в прямом направлении, соответствующем записи уравнения реакции (слева направо), если изменение соответствующей характеристической функции является отрицательным.

Исключение составляют адиабатические процессы (U и V — const. и Н и р — const.), характеристической функцией которых является энтропия S. В этом случае процесс протекает, если изменение энтропии будет положительнымS >0).

Читайте также:  Полезные свойства говяжьего языка

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 9929 — | 7663 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Термодинамика – это раздел физики, изучающий тепловые свойства макроскопических тел и систем тел, находящихся в состоянии теплового равновесия, на основе закона сохранения энергии, без учета внутреннего строения тел, составляющих систему.

Термодинамика не рассматривает микроскопические величины – размеры атомов и молекул, их массы и количество.

Законы термодинамики устанавливают связи между непосредственно наблюдаемыми физическими величинами, характеризующими состояние системы, такими как давление ​ \( p \) ​, объем ​ \( V \) ​, температура ​ \( T \) ​.

Внутренняя энергия – это физическая величина, равная сумме кинетической энергии теплового движения частиц тела и потенциальной энергии их взаимодействия друг с другом.

Обозначение – ​ \( U \) ​, в СИ единица измерения – Джоуль (Дж).

В термодинамике внутренняя энергия зависит от температуры и объема тела.

Внутренняя энергия тел зависит от их температуры, массы и агрегатного состояния. С ростом температуры внутренняя энергия увеличивается. Наибольшая внутренняя энергия у вещества в газообразном состоянии, наименьшая – в твердом.

Внутренняя энергия идеального газа представляет собой только кинетическую энергию теплового движения его частиц; потенциальная энергия взаимодействия частиц равна нулю.

Внутренняя энергия идеального газа прямо пропорциональна его температуре, а от объема не зависит (молекулы идеального газа не взаимодействуют друг с другом):

где ​ \( i \) ​ – коэффициент, равный числу степеней свободы молекулы, ​ \( \nu \) ​ – количество вещества, ​ \( R \) ​ – универсальная газовая постоянная, ​ \( T \) ​ – абсолютная температура.

Число степеней свободы равно числу возможных движений частицы.

Важно!
Для одноатомных газов коэффициент ​ \( i \) ​ = 3, для двухатомных газов ​ \( i \) ​ = 5.

На практике часто важно уметь находить изменение внутренней энергии:

При решении задач можно записать формулу для вычисления внутренней энергии, используя уравнение Менделеева–Клапейрона:

где ​ \( p \) ​ – давление, ​ \( V \) ​ – объем газа.

Внутренняя энергия реальных газов зависит как от температуры, так и от объема.

Изменить внутреннюю энергию можно за счет изменения температуры (при теплопередаче) и за счет изменения давления и объема (при совершении работы).

Тепловое равновесие – это состояние системы, при котором все ее макроскопические параметры остаются неизменными сколь угодно долго.

Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называются макроскопическими параметрами. К ним относятся давление и температура, объем, масса, концентрация отдельных компонентов смеси газа и др. В состоянии теплового равновесия отсутствует теплообмен с окружающими телами, отсутствуют переходы вещества из одного агрегатного состояния в другое, не меняются температура, давление, объем.

Любая термодинамическая система переходит самопроизвольно в состояние теплового равновесия. Каждому состоянию теплового равновесия, в которых может находиться термодинамическая система, соответствует определенная температура.

Важно!
В состоянии теплового равновесия объем, давление могут быть различными в разных частях термодинамической системы, и только температура во всех частях термодинамической системы, находящейся в состоянии теплового равновесия, является одинаковой. Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии: меняются положения молекул, их скорости при столкновениях.

Теплопередача – процесс изменения внутренней энергии тела без совершения работы.

Существуют три вида теплопередачи: теплопроводность, конвекция и излучение (лучистый теплообмен). Теплопередача происходит между телами, имеющими разную температуру. Тепло передается от тела с более высокой температурой к телу с более низкой температурой.

Теплопроводность – это процесс переноса энергии от более нагретых тел (частей тела) к менее нагретым в результате движения и взаимодействия частиц тела. Высокую теплопроводность имеют металлы – так, лучшие проводники тепла – медь, золото, серебро. Теплопроводность жидкостей меньше, а газы являются плохими проводниками тепла. Пористые тела плохо проводят тепло, так как в порах содержится воздух. Вещества с низкой теплопроводностью используют в качестве теплоизоляторов. Теплопроводность невозможна в вакууме. При теплопроводности не происходит переноса вещества.

Явление теплопроводности газов аналогично явлению диффузии. Быстрые молекулы из слоя с более высокой температурой перемещаются в более холодный слой, а молекулы из холодного слоя перемещаются в более нагретый. За счет этого средняя кинетическая энергия молекул более теплого слоя уменьшается, и его температура становится ниже.

В жидкостях и твердых телах при повышении температуры какого-либо участка твердого тела или жидкости его частицы начинают колебаться сильнее. Соударяясь с соседними частицами, где температура ниже, эти частицы передают им часть своей энергии, и температура этого участка возрастает.

Конвекция – перенос энергии потоками жидкости или газа.

Объяснить механизм конвекции можно на основе теплового расширения тел и закона Архимеда. При нагревании объем жидкости увеличивается, а плотность уменьшается. Нагретый слой под действием силы Архимеда поднимается вверх, а холодный опускается вниз. Это естественная конвекция. Она возникает при неравномерном нагревании жидкости или газа снизу в поле тяготения.

При вынужденной конвекции перемещение вещества происходит под действием насосов, лопастей вентилятора. Такая конвекция применяется в состоянии невесомости. Интенсивность конвекции зависит от разности температур слоев среды и агрегатного состояния вещества. Конвекционные потоки поднимаются вверх. При конвекции происходит перенос вещества.

В твердых телах конвекция невозможна, так как частицы не могут из-за сильного взаимодействия покидать свои места. В вакууме конвекция также невозможна.

Примером конвективных потоков в природе являются ветры (бризы дневной и ночной, муссоны).

Излучение (лучистый теплообмен) – перенос энергии электромагнитными волнами. Перенос тепла излучением возможен в вакууме. Источником излучения является любое тело, температура которого отлична от нуля К. При поглощении энергия теплового излучения переходит во внутреннюю энергию. Темные тела быстрее нагреваются излучением, чем тела с блестящей поверхностью, но и остывают быстрее. Мощность излучения зависит от температуры тела. С увеличением температуры тела энергия излучения увеличивается. Чем больше площадь поверхности тела, тем интенсивнее излучение.

Количество теплоты – это скалярная физическая величина, равная энергии, которую тело получило или отдало при теплопередаче.

Обозначение – ​ \( Q \) ​, в СИ единица измерения – Дж.

Удельная теплоемкость – это скалярная физическая величина, численно равная количеству теплоты, которое тело массой 1 кг получает или отдает при изменении его температуры на 1 К.

Обозначение – ​ \( c \) ​, в СИ единица измерения – Дж/(кг·К).

Удельная теплоемкость определяется не только свойствами вещества, но и тем, в каком процессе осуществляется теплопередача. Поэтому выделяют удельную теплоемкость газа при постоянном давлении – ​ \( c_P \) ​ и удельную теплоемкость газа при постоянном объеме – ​ \( c_V \) ​. Для нагревания газа на 1 К при постоянном давлении требуется большее количество теплоты, чем при постоянном объеме – ​ \( c_P > c_V \) ​.

Формула для вычисления количества теплоты, которое получает тело при нагревании или отдает при охлаждении:

где ​ \( m \) ​ – масса тела, ​ \( c \) ​ – удельная теплоемкость, ​ \( T_2 \) ​ – конечная температура тела, ​ \( T_1 \) ​ – начальная температура тела.

Важно!
При решении задач на расчет количества теплоты при нагревании или охлаждении можно не переводить температуру в кельвины. Так как 1К=1°С, то​ \( \Delta T=\Delta t \) ​.

Работа в термодинамике равна изменению внутренней энергии тела.

Обозначение работы газа – ​ \( A’ \) ​, единица измерения в СИ – джоуль (Дж). Обозначение работы внешних сил над газом – ​ \( A \) ​.

Работой расширения идеального газа называют работу, которую газ совершает против внешнего давления.

Работа газа положительна при расширении и отрицательна при его сжатии. Если объем газа не изменяется (изохорный процесс), то работы газ не совершает.

Графически работа газа может быть вычислена как площадь фигуры под графиком зависимости давления от объема в координатных осях ​ \( (p,V) \) ​, ограниченная графиком, осью ​ \( V \) ​ и перпендикулярами, проведенными из точек начального и конечного значений объема.

Формула для вычисления работы газа:

в изобарном процессе ​ \( A’=p\cdot\Delta V. \) ​

в изотермическом процессе \( A’=\fracRT\ln\frac. \) ​

Если система тел является теплоизолированной, то ее внутренняя энергия не будет изменяться несмотря на изменения, происходящие внутри системы. Если ​ \( A \) ​ = 0, ​ \( Q \) ​ = 0, то и ​ \( \Delta U \) ​ = 0 .

При любых процессах, происходящих в теплоизолированной системе, ее внутренняя энергия не изменяется (закон сохранения внутренней энергии).

Рассмотрим теплоизолированную систему из двух тел с разными температурами. При контакте между ними будет проходить теплообмен. Тело с большей температурой будет отдавать некоторое количество теплоты, а тело с меньшей температурой – получать, пока температуры тел не станут равными. Так как суммарная внутренняя энергия не должна изменяться, то, на сколько уменьшится внутренняя энергия более нагретого тела, на столько должна увеличиться внутренняя энергия второго тела. Так как работа не совершается, то изменение внутренней энергии равно количеству теплоты.

Количество теплоты, отданное при теплообмене телом с большей температурой, равно по модулю количеству теплоты, полученному телом с меньшей температурой:

Другая формулировка: если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма отданных ​ \( Q_ \) ​ и полученных \( Q_ \) количеств теплоты равна нулю:

Закон сохранения и превращения энергии, распространенный на тепловые явления, называется первым законом (началом) термодинамики.

Можно дать формулировку этого закона исходя из способов изменения внутренней энергии.

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если рассматривать работу самой системы над внешними телами, то закон может быть сформулирован так:

количество теплоты, переданное системе, идет на изменение ее внутренней энергии и совершение системой работы над внешними телами:

Если система изолирована и над ней не совершается работа и нет теплообмена с внешними телами, то в этом случае внутренняя энергия не изменяется. Если к системе не поступает теплота, то работа системой может совершаться только за счет уменьшения внутренней энергии. Это значит, что невозможно создать вечный двигатель – устройство, способное совершать работу без каких-либо затрат топлива.

Первый закон термодинамики для изопроцессов

Изотермический процесс: ​ \( Q=A’\,(T=const, \Delta U=0) \) ​
Физический смысл: все переданное газу тепло идет на совершение работы.

Изобарный процесс: \( Q=\Delta U+A’ \) ​
Физический смысл: подводимое к газу тепло идет на увеличение его внутренней энергии и на совершение газом работы.

Изохорный процесс: \( Q=\Delta U\,(V=const, A’=0) \) ​
Физический смысл: внутренняя энергия газа увеличивается за счет подводимого тепла.

Адиабатный процесс: ​ \( \Delta U=-A’ \) ​ или ​ \( A=\Delta U\,\mathbf \) ​
Физический смысл: внутренняя энергия газа уменьшается за счет совершения газом работы. Температура газа при этом понижается.

Задачи об изменении внутренней энергии тел

Такие задачи можно разделить на группы:

  • При взаимодействии тел изменяется их внутренняя энергия без совершения работы над внешней средой.
  • Рассматриваются явления, связанные с превращением одного вида энергии в другой при взаимодействии двух тел. В результате происходит изменение внутренней энергии одного тела вследствие совершенной им или над ним работы.
Читайте также:  Греческий йогурт чем полезен

При решении задач первой группы:

  • установить, у каких тел внутренняя энергия уменьшается, а у каких – возрастает;
  • составить уравнение теплового баланса ​ \( (\Delta U=0) \) , при записи которого в выражении ​ \( Q =cm(t_2 – t_1) \) ​ для изменения внутренней энергии нужно вычитать из конечной температуры тела начальную и суммировать члены с учетом получающегося знака;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

При решении задач второй группы:

  • убедиться, что в процессе взаимодействия тел теплота извне к ним не подводится, т.е. действительно ли ​ \( Q = 0 \) ​;
  • установить, у какого из двух взаимодействующих тел изменяется внутренняя энергия и что является причиной этого изменения – работа, совершенная самим телом, или работа, совершенная над телом;
  • записать уравнение ​ \( Q = \Delta U + A \) ​ для тела, у которого изменяется внутренняя энергия, учитывая знак перед работой и КПД рассматриваемого процесса;
  • если работа совершается за счет уменьшения внутренней энергии одного из тел, то ​ \( А= -\Delta U \) ​, а если внутренняя энергия тела увеличивается за счет работы, совершенной над телом, то ​ \( A=\Delta U \) ​;
  • найти выражения для ​ \( \Delta U \) ​ и ​ \( A \) ​;
  • подставить в исходное уравнение вместо \( \Delta U \) и \( A \) выражения для них, получить окончательное соотношение для определения искомой величины;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

Все процессы в природе протекают только в одном направлении. В обратном направлении самопроизвольно они протекать не могут. Необратимым называется процесс, обратный которому может протекать только как составляющая более сложного процесса.

Примеры необратимых процессов:

  • переход тепла от более нагретого тела к менее нагретому телу;
  • переход механической энергии во внутреннюю энергию.

Первый закон термодинамики ничего не говорит о направлении процессов в природе.

Второй закон термодинамики выражает необратимость процессов, происходящих в природе. Существует несколько его формулировок.

Второй закон термодинамики (формулировка Клаузиуса):
невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах.

Второй закон термодинамики (формулировка Кельвина):
невозможно осуществить такой периодический процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника.

Эта формулировка говорит также и о том, что невозможно построить вечный двигатель второго рода, то есть двигатель, совершающий работу за счет охлаждения какого-либо одного тела.

Важно!
В формулировке второго закона термодинамики большое значение имеют слова «единственным результатом». Если процессы, о которых идет речь, не являются единственными, то запреты снимаются. Например, в холодильнике происходит передача тепла от более холодного тела к нагретому и при этом осуществляется компенсирующий процесс превращения механической энергии окружающих тел во внутреннюю энергию.

Второй закон термодинамики выполняется для систем с огромным числом частиц. В системах с малым количеством частиц возможны флуктуации – отклонения от равновесия.

Коэффициентом полезного действия (КПД) тепловой машины (двигателя) называется отношение работы ​ \( A \) ​, совершаемой двигателем за цикл, к количеству теплоты ​ \( Q_1 \) ​, полученному за цикл от нагревателя:

Тепловая машина с максимальным КПД была создана Карно. В машине осуществляется круговой процесс (цикл Карно), при котором после ряда преобразований система возвращается в начальное состояние.

Цикл Карно состоит из четырех стадий:

  1. Изотермическое расширение (на рисунке — процесс 1–2). В начале процесса рабочее тело имеет температуру ​ \( T_1 \) ​, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передает ему количество теплоты ​ \( Q_1 \) ​. При этом объем рабочего тела увеличивается.
  2. Адиабатное расширение (на рисунке — процесс 2–3). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника ​ \( T_2 \) ​.
  3. Изотермическое сжатие (на рисунке — процесс 3–4). Рабочее тело, имеющее к тому времени температуру ​ \( T_2 \) ​, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты ​ \( Q_2 \) ​.
  4. Адиабатное сжатие (на рисунке — процесс 4–1). Рабочее тело отсоединяется от холодильника. При этом его температура увеличивается до температуры нагревателя ​ \( T_1 \) ​.

КПД цикла Карно:

Отсюда видно, что КПД цикла Карно с идеальным газом зависит только от температуры нагревателя ​ \( (T_1) \) ​ и холодильника \( (T_2) \) .

Из уравнения следуют выводы:

  • для повышения КПД тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;
  • КПД тепловой машины всегда меньше 1.

Цикл Карно обратим, так как все его составные части являются равновесными процессами.

КПД тепловых двигателей: двигатель внутреннего сгорания — 30%, дизельный двигатель — 40%, паровая турбина — 40%, газовая турбина — 25–30%.

Тепловым двигателем называют устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Основные части теплового двигателя:

  • Нагреватель – тело с постоянной температурой, преобразующее внутреннюю энергию топлива в энергию газа. В каждом цикле работы двигателя нагреватель передает рабочему телу некоторое количество теплоты.
  • Рабочее тело – это газ, совершающий работу при расширении.
  • Холодильник – тело с постоянной температурой, которому рабочее тело передает часть тепла.

Любая тепловая машина получает от нагревателя некоторое количество теплоты ​ \( Q_1 \) ​ и передает холодильнику количество теплоты ​ \( Q_2 \) ​. Так как ​ \( Q_1 > Q_2 \) ​, то совершается работа ​ \( A’ = Q_1 – Q_2 \) ​.

Тепловой двигатель должен работать циклически, поэтому расширение рабочего тела должно сменяться его сжатием. Работа расширения газа должна быть больше работы сжатия, совершаемой внешними силами (условие совершения полезной работы). Температура газа при расширении должна быть выше, чем температура при сжатии. Тогда давление газа во всех промежуточных состояниях при сжатии будет меньше, чем при расширении.

В реальных тепловых машинах нагревателем является камера сгорания. В них рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Количество теплоты, выделяющееся при сгорании топлива, вычисляется по формуле:

где ​ \( q \) ​ – удельная теплота сгорания топлива, ​ \( m \) ​ – масса топлива.

Холодильником чаще всего у реальных двигателей служит атмосфера.

  • паровой двигатель;
  • турбина (паровая, газовая);
  • двигатель внутреннего сгорания (карбюраторный, дизельный);
  • реактивный двигатель.

Тепловые двигатели широко используются на всех видах транспорта: на автомобилях – двигатели внутреннего сгорания; на железнодорожном транспорте – дизельные двигатели (на тепловозах); на водном транспорте – турбины; в авиации – турбореактивные и реактивные двигатели. На тепловых и атомных электростанциях тепловые двигатели приводят в движение роторы генераторов переменного тока.

Тепловые двигатели широко применяются на транспорте и в энергетике (тепловые и атомные электростанции). Использование тепловых двигателей сильно влияет на состояние биосферы Земли. Можно выделить следующие вредные факторы:

  • при сжигании топлива используется кислород из атмосферы, что приводит к снижению содержания кислорода в воздухе;
  • при сгорании топлива в атмосферу выделяется углекислый газ. Концентрация углекислого газа в атмосфере повышается. Это изменяет прозрачность атмосферы, так как молекулы углекислого газа поглощают инфракрасное излучение, что ведет к повышению температуры (парниковый эффект);
  • при сжигании угля в атмосферу поступают азотные, серные соединения и соединения свинца, вредные для здоровья человека.

Решение проблемы охраны окружающей среды от вредного воздействия предприятий тепловой энергетики требует комплексного подхода. Массовыми загрязнителями при работе тепловых электростанций являются летучая зола, диоксид серы и оксиды азота. Методы сокращения выбросов зависят от свойств топлива и условия его сжижения. Предотвращение загрязнения летучей золой достигается очисткой всего объема продуктов сгорания твердого топлива в высокоэффективных золоуловителях. Сокращение выбросов оксидов азота с продуктами сгорания топлива на тепловых электростанциях, а также в парогазовых и газотурбинных установках обеспечивается, главным образом, технологией сжигания топлива. Уменьшение выброса диоксида серы может быть достигнуто различными методами облагораживания и переработки топлива вне тепловых электростанций либо непосредственно на тепловых электростанциях, а также очисткой дымовых газов.

Контроль за выбросом вредных веществ электростанций осуществляется специальными приборами.

В ряде случаев достаточно эффективным решением вопросов очистки выбросов в атмосферу остается сооружение фильтров-уловителей и дымовых труб. У дымовой трубы два назначения: первое — создавать тягу и тем самым заставлять воздух — обязательный участник процесса горения — в нужном количестве и с должной скоростью входить в топку; второе — отводить продукты горения (вредные газы и имеющиеся в дыме твердые частицы) в верхние слои атмосферы. Благодаря непрерывному турбулентному движению вредные газы и твердые частицы уносятся далеко от источника их возникновения и рассеиваются.

Для рассеивания сернистого ангидрида, содержащегося в дымовых трубах тепловых электростанций, сооружаются дымовые трубы высотой 180, 250 и 320 м. Тепловые электростанции России, работающие на твердом топливе, за год выбрасывают в отвалы около 100 млн т золы и шлаков. Зола и шлаки занимают большие площади земель, неблагоприятно влияют на окружающую среду.

Более половины всех загрязнений создает транспорт. Один из путей решения проблемы защиты окружающей среды заключается в переходе на дизельные двигатели, электродвигатели, повышение КПД.

Алгоритм решения задач раздела «Термодинамика»:

  • выделить систему тел и определить ее тип (замкнутая, адиабатически замкнутая, замкнутая в механическом смысле, незамкнутая);
  • выяснить, как изменяются параметры состояния ​ \( (p,V,T) \) ​ и внутренняя энергия каждого тела системы при переходе из одного состояния в другое;
  • записать уравнения, связывающие параметры двух состояний системы, формулы для расчета изменения внутренней энергии каждого тела системы при переходе из одного состояния в другое;
  • определить изменение механической энергии системы и работу внешних сил по изменению ее объема;
  • записать формулу первого закона термодинамики или закона сохранения и превращения энергии;
  • решить систему уравнений относительно искомой величины;
  • проверить решение.

источник

1) М.В. Ломоносов, проведя стройные рассуждения и простые опыты, пришел к выводу, что «причина теплоты состоит во внутреннем движении частиц связанной материи… Весьма известно, что тепло возбуждается движением: руки от взаимного трения согреваются, дерево загорается, искры вылетают при ударе кремнием о сталь, железо накаливается при ковании его частиц сильными ударами»

2) Б. Румфорд, работая на заводе по изготовлению пушек, заметил, что при сверлении пушечного ствола он сильно нагревается. Например, он помещал металлический цилиндр массой около 50 кг в ящик с водой и, сверля цилиндр сверлом, доводил воду в ящике до кипения за 2.5часа.

3) Дэви в 1799 году осуществил интересный опыт. Два куска льда при трении одного о другой начали таять и превращаться в воду.

4) Корабельный врач Роберт Майер в 1840 году во время плавания на остров Яву заметил, что после шторма вода в море всегда теплее, чем до него.

В механике работа определяется как произведение модулей силы и перемещения: A=FS. При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.

Пусть в цилиндре с подвижным поршнем находится газ при температуре T1 (рис.). Будем медленно нагревать газ до температуры T2. Газ будет изобарно расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl. Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = pS тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле A=F Δ l =pS Δ l =p Δ V , A= p Δ V

Читайте также:  Сообщение по окружающему миру полезные ископаемые

где ΔV — изменение объема газа. Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.

Почему при сжатии или расширении меняется внутренняя энергия тела? Почему при сжатии газ нагревается, а при расширении охлаждается?

Причиной изменения температуры газа при сжатии и расширении является следующее: при упругих соударениях молекул с движущимся поршнем их кинетическая энергия изменяется.

  • Если газ сжимается, то при столкновении движущийся навстречу поршень передаёт молекулам часть своей механической энергии, в результате чего газ нагревается;
  • Если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются. в результате чего газ охлаждается.

При сжатии и расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Работа внешних сил, действующих на газ

  • При сжатии газа, когда Δ V = V 2 – V 1 0, направления силы и перемещения совпадают;
  • При расширении, когда Δ V = V 2 – V 1 > 0 , A

Запишем уравнение Клапейрона-Менделеева для двух состояний газа:

Следовательно, при изобарном процессе

Если m = М (1 моль идеального газа), то при ΔΤ = 1 К получим R = A. Отсюда вытекает физический смысл универсальной газовой постоянной: она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

Геометрическое истолкование работы:

На графике p = f(V) при изобарном процессе работа равна площади заштрихованного на рисунке а) прямоугольника.

Если процесс не изобарный (рис. б), то кривую p = f(V) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет равна площади заштрихованной фигуры. При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке в.

источник

Поскольку энергетические соотношения играют в термодинамике очень важную роль (вся термодинамика развивалась под влиянием практических потребностей преобразования теплоты в работу), то при расчетах особый интерес представляет аналог механической потенциальной энергии. Напомним, что в механике потенциальная энергия вводится как скалярная функция, позволяющая вычислить работу консервативной силы не через вычисление интеграла от элементарной работы вдоль всего пройденного пути, а просто как разность значений этой функции в начале и конце пути (что существенно упрощает вычисления). Нахождение работы силы является одной из важнейших задач механики. Однако в термодинамике, в отличие от привычной механики консервативных систем (где отсутствуют силы, зависящие от скоростей), система может переходить из одного состояния в другое, совершая разную работу, в зависимости от способа (пути) перехода, поскольку разное количество энергии передается частично силовым (работа), а частично тепловым (теплота) путем (хотя полное изменение внутренней энергии системы будет при этом тем же самым). Поэтому в термодинамике рассматривают четыре наиболее важных для практики процесса изменения состояния термодинамических систем. Так, например, изменение состояния системы без теплообмена с окружающей средой может происходить при неизменном объеме, а может — при постоянном давлении (с изменением объема). Роль потенциальной энергии в этих процессах будут играть разные функции, в первом случае – внутренняя энергия U, а во втором – так называемая энтальпия H (теплосодержание). Если процесс происходит при хорошем тепловом контакте, обеспечивающем постоянство и равенство температуры термодинамической системы с температурой внешней среды, то изменение состояния системы может опять происходить как при постоянном объеме, так и при постоянном давлении. Здесь в первом случае роль потенциальной энергии будет играть функция, называемая свободной энергией и обозначаемая обычно F, а во втором – термодинамическим потенциалом Гиббса (свободной энтальпией), который мы будем обозначать буквой G.

Таким образом, в термодинамике оказалось несколько аналогов потенциальной энергии в зависимости от вида процесса. Эти функции состояния термодинамической системы получили название термодинамических потенциалов. Изменения этих функций при переходе системы из одного состояния в другое позволяют вычислить максимальную работу, которую при этом система может совершить в самом благоприятном случае, когда нет потерь энергии. Еще раз напомним, что основной технической задачей термодинамики является создание максимально эффективных тепловых машин как источников механической энергии, то есть машин, преобразующих теплоту в работу.

6.2. Термодинамические потенциалы в адиабатных процессах

Термин адиабатный означает полную тепловую изоляцию системы. Самый простой случай при этом – обратимые процессы в полностью изолированных системах, то есть в системах, не имеющих никаких связей с внешним миром — ни тепловых, ни силовых, ни материальных (обмен веществом). В этом случае термодинамическое тождество (5.3) в силу равенства нулю левой части сразу показывает, что совершаемая системой работа против внешних сил может выполняться только за счет уменьшения ее внутренней энергии, то есть

Индекс max означает, что равенство выполняется только в идеальном процессе, происходящем без потерь энергии. Равенство (6.1) означает, что в полностью изолированных системах при сохранении энтропии и объема роль потенциальной энергии будет играть внутренняя энергия.

Если работа выполняется термодинамической системой в условиях теплоизоляции, но при наличии механических связей с окружающими телами, то такая работа выполняется не только за счет убыли внутренней энергии, но и за счет изменения потенциальной энергии системы как целого в поле внешних сил dEпот. Основной случай механической связи – это связь, осуществляемая посредством внешнего давления (практически наиболее интересный случай), и тогда dEпот = PвнешdV. Для элементарной работы газообразной системы при условии постоянного давления это дает

Уравнение (6.2) показывает, что роль потенциальной энергии для внешних сил (при постоянном давлении) у газа играет произведение давления на объем PV. Сумма внутренней энергии и этого произведения, играющая роль полной потенциальной энергии в изобарных процессах без теплообмена, получившая название энтальпия (теплосодержание) и обозначаемая обычно символом H,

является термодинамическим потенциалом для адиабатных процессов при наличии силовой связи с внешним миром. Максимальная работа, которую может совершить термодинамическая система в таких условиях, равна убыли энтальпии. В присутствии электромагнитных влияний выражение для энтальпии принимает вид

H = U + PV – (D·E)/2 – (H·B)/2. (6.3’)

Стоящие в скобках скалярные произведения учитывают потенциальную энергию поляризованности и намагниченности вещества (в расчете на один моль) во внешних электрических (напряженность E)и магнитных (магнитная индукция B) полях. ЗдесьDиH – векторы электрического смещения и напряженности магнитного поля.

источник

Если бесконечно малое расширение системы за счет подвода к ней теплоты, происходит во внешней среде, находящейся повсюду под одним и тем же давлением Р, то увеличение объема системы V на бесконечно малую величину dV сопровождается работой:

, (*)

которую совершает система над окружающей средой и называемой работой изменения объема (механическая работа).

При изменении объема тела от значения объема до значения работа, совершаемая системой, будет равняться:

Из формулы (*) следует, что и всегда имеют одинаковые знаки:

— если , то и , т.е. при расширении работа тела положительна, при этом тело само совершает работу;

— если же , то и , т. е. при сжатии работа тела отрицательна: это означает, что не тело совершает работу, а на его сжатие затрачивается работа извне.

Теперь, рассмотрим работу, которая производится системой над каким- либо внешним объектом. Пусть рассматриваемое тело представляет собой газ, находящийся в цилиндре под поршнем. Поршень сверху нагружен грузом.

В результате подвода теплоты к газу произошло его расширение от объема до объема . При этом поршень с грузом переместился с высоты на высоту .

В результате расширения телом совершена работа:

а потенциальная энергия груза увеличилась на величину:

Разность между работой расширения и приращением потенциальной энергии представляет собой полезную внешнюю работу (располагаемую или техническую работу) которая произведена телом над внешним объектом:

В термодинамике широко используют -диаграмму. Поскольку состояние термодинамической системы определяется двумя параметрами, то на -диаграмме оно изображается точкой. На рисунке точка 1 соответствует начальному состоянию системы, точка 2 -конечному, а линия 1-2 соответствует процессу расширения рабочего тела от до .

Механическая работа графически изображается на плоскости площадью, заключенной между кривой процесса и осью объемов.

Располагаемая работа графически изображается на плоскости площадью, заключенной между кривой процесса и осью давлений.

Работа зависит от характера термодинамического процесса.

Первый закон термодинамики.

Первый закон термодинамики представляет собой закон сохранения и превращения энергии.

Для термодинамических процессов закон устанавливает взаимосвязь между теплотой, работой и изменением внутренней энергии термодинамической системы.

Формулировка первого закона термодинамики:

Теплота, подведенная к системе, расходуется на изменение энергии системы и совершение механической работы.

Для 1кг вещества уравнение первого закона термодинамики имеет вид:

Первый закон термодинамики может быть записан также в другой форме.

Учитывая то, что энтальпия равна:

(*)

Выразим из выражения изменение внутренней энергии:

и подставим ее в уравнение первого закона термодинамики

До сих пор мы рассматривали только системы, вещество в которых не перемещалось в пространстве. Однако следует отметить, что первый закон термодинамики имеет общий характер и справедлив для любых термодинамических систем- и неподвижных и движущихся.

Предположим, что рабочее тело подается в тепломеханический агрегат (например, лопатки турбины). Рабочее тело совершает техническую работу, например, приводя в движение ротор турбины, а затем удаляется через выхлопной патрубок.

Запишем первый закон термодинамики для неподвижной системы:

Работа расширения совершается рабочим телом на поверхностях, ограничивающих выделенный движущийся объем, т. е. на стенках агрегата. Часть стенок агрегата неподвижна, и работа расширения на них равна нулю. Другая часть стенок специально делается подвижной (рабочие лопатки в турбине), и рабочее тело совершает на них техническую работу .

При входе рабочего в агрегат и выходе его из агрегата затрачивается так называемая работа вытеснения:

Часть работы расширения () затрачивается на увеличение кинетической энергии рабочего тела в потоке, равное .

Подставив данное выражение механической работы в уравнение первого закона термодинамики, получим:

Поскольку энтальпия равна:

Окончательный вид первого закона термодинамики для движущегося потока будет иметь вид:

Теплота, подведенная к потоку рабочего тела, расходуется на увеличение энтальпии рабочего тела, производство технической работы и увеличение кинетической энергии потока.

Второй закон термодинамики.

Первый закон термодинамики утверждает, что теплота может превращаться в работу, а работа в теплоту. Работа может быть полностью превращена в теплоту, например, путем трения, однако теплоту полностью превратить в работу в периодически повторяющемся (непрерывном) процессе нельзя.

Первый закон термодинамики “позволяет” создать тепловой двигатель полностью превращающий подведенную теплоту в работу L, т.е.:

Второй закон накладывает более жесткие ограничения и утверждает, что работа должна быть меньше подведенной теплоты () на величину отведенной теплоты , т.е.:

Вечный двигатель можно осуществить, если теплоту передать от холодного источника к горячему. Но для этого теплота самопроизвольно должна перейти от холодного тела к горячему, что невозможно.

Теплота сама собой может переходить только от более нагретых тел к холодным. Переход теплоты от холодных тел к нагретым сам собой не происходит. Для этого нужно затратить дополнительную энергию.

Таким образом, для полного анализа явления и процессов необходимо иметь кроме первого закона термодинамики еще дополнительную закономерность. Этим законом является второй закон термодинамики. Он устанавливает, возможен или невозможен тот или иной процесс, в каком направлении протекает процесс, когда достигается термодинамическое равновесие и при каких условиях можно получить максимальную работу. Одна из формулировок второго закона термодинамики:

Для существования теплового двигателя необходимы 2 источника —горячий источник и холодный источник(окружающая среда).

Дата добавления: 2014-10-31 ; Просмотров: 2078 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Источники:
  • http://studopedia.su/11_93161_rabota-termodinamicheskoy-sistemi.html
  • http://studopedia.ru/4_164895_maksimalnaya-i-maksimalno-poleznaya-rabota.html
  • http://fizi4ka.ru/egje-2018-po-fizike/termodinamika.html
  • http://www.sites.google.com/site/opatpofizike/teoria/rabota-v-termodinamike
  • http://mydocx.ru/1-30998.html
  • http://studopedia.su/11_93161_rabota-termodinamicheskoy-sistemi.html