Меню Рубрики

Полезное время в физиологии

Все возбудимые клетки (ткани) обладают рядом общих физиологических свойств (законы раздражения), краткая характеристика которых приводится ниже. Универсальным раздражителем для возбудимых клеток является электрический ток.

Простая возбудимая система – это одна возбудимая клетка, которая реагирует на раздражитель как единое целое.

В простых возбудимых системах подпороговые раздражители не вызывают возбуждения, сверхпороговые раздражители вызывают максимальное возбуждение (рис. 1). При подпороговых значениях раздражающего тока возбуждение (ЭП, ЛО) носит местный (не распространяется), градуальный (сила реакции пропорциональная силе действующего стимула) характер. При достижении порога возбуждения возникает ответ максимальной силы (ПД). Амплитуда ответа (амплитуда ПД) не изменяется при дальнейшем увеличении силы раздражителя.

Рис. 1. Зависимость силы реакции простой возбудимой системы (клетки) от силы раздражителя.
ПВ – порог возбуждения

Сложная возбудимая система – система, состоящая из множества возбудимых элементов (мышца включает множество двигательных единиц, нерв – множество аксонов). Отдельные элементы системы имеют неодинаковые пороги возбуждения.

Для сложных возбудимых систем амплитуда ответа пропорциональна силе действующего раздражителя (при значениях силы раздражителя от порога возбуждения самого легковозбудимого элемента до порога возбуждения самого трудновозбудимого элемента) (рис. 2). Амплитуда ответа системы пропорциональна количеству вовлеченных в ответ возбудимых элементов. При возрастании силы раздражителя в реакцию вовлекается все большее число возбудимых элементов.

Рис. 2. Зависимость силы реакции сложной возбудимой системы (нерв, мышца) от силы раздражителя.
ПВ мin порог возбуждения самого легковозбудимого элемента,
ПВ мах порог возбуждения самого трудновозбудимого элемента

Эффективность раздражителя зависит не только от силы, но и от времени его действия. Сила раздражителя, вызывающего процесс распространяющегося возбуждения, находится в обратной зависимости от длительности его действия. Графически эта закономерность выражается кривой Вейсса (рис. 3).

Рис. 3. Зависимость пороговой силы раздражителя от времени его действия (закон силы — длительности).
Р – реобаза, ПВ – полезное время, Х – хронаксия

Минимальную силу раздражителя, вызывающую возбуждение, называют реобазой . Наименьшее время, в течение которого должен действовать раздражитель силой в одну реобазу, чтобы вызвать возбуждение, называют полезным временем . Для более точной характеристики возбудимости используют параметр хронаксия. Хронаксия – минимальное время действия раздражителя в 2 реобазы, необходимое для того, чтобы вызвать возбуждение.

Закон крутизны раздражения
(закон крутизны нарастания силы раздражителя)

Для возникновения возбуждения имеет значение не только сила и время действия тока, но и скорость нарастания силы тока. Для возникновения возбуждения сила раздражающего тока должна нарастать достаточно круто (рис. 4). При медленном нарастании силы тока происходит явление аккомодации – возбудимость клетки снижается. В основе явления аккомодации лежит повышение КУД вследствие постепенной инактивации Na+ -каналов.

Рис. 4. Изменение мембранного потенциала и критического уровня деполяризации при медленном ( А ) и быстром ( Б ) нарастании силы раздражающего тока.

Деполяризация, повышение возбудимости и возникновение возбуждения происходят при действии на клетку выходящего тока . При действии входящего тока происходят противоположные изменения – гиперполяризация и снижение возбудимости, возбуждение не возникает. За направление тока принимают направление от области положительного заряда к области отрицательного заряда.

При внеклеточном раздражении возбуждение возникает в области катода (–). При внутриклеточном раздражении для возникновения возбуждения необходимо, чтобы внутриклеточный электрод имел положительный знак (рис. 5).

Рис. 5. Изменения, наступающие в нервном волокне при внутриклеточном или внеклеточном раздражении.
Стрелкой показано направление электрического тока

Под лабильностью понимают функциональную подвижность, скорость протекания элементарных физиологических процессов в клетке (ткани). Количественной мерой лабильности является максимальная частота циклов возбуждения, которую может воспроизводить клетка. Частота циклов возбуждения не может возрастать беспредельно, так как в каждом цикле возбуждения имеется период рефрактерности. Чем короче рефрактерный период, тем больше лабильность клетки.

источник

В) Полезное время — это минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение.

ФИЗИОЛОГИЯ И Б И О Ф И 3 И К А В О 3 Б У Д И М Ы X

Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей

Раздражимость — это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением физиологических параметров клетки, ткани, организма, например изменением метаболизма.

Возбудимость — это способность живой ткани отвечать на раздражение активной специфической реакцией — возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.е. возбудимость характеризует специализированные ткани — нервную, мышечные, железистые, которые называются возбудимыми. Возбуждение — это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д. Возбудимые ткани обладают проводимостью. Это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы.

Раздражитель — это фактор внешней или внутренней среды действующий на живую ткань.

Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением.

Все раздражители делятся на следующие группы: 1.По природе

А) физические (электричество, свет, звук, механические воздействия и т.д.)

Б) химические (кислоты, щелочи, гормоны и т.д.)

В) физико-химические (осмотическое давление, парциальное давление газов и т.д.)

Г) биологические (пища для животного, особь другого пола)

д) социальные (слово для человека). 2.По месту воздействия:

А) внешние (экзогенные)

б) внутренние (эндогенные) З.По силе:

А) подпороговые (не вызывающие ответной реакции)

Б) пороговые (раздражители минимальной силы, при которой возникает возбуждение)

в) сверхпороговые (силой выше пороговой) 4.По физиологическому характеру:

а) адекватные (физиологичные для данной клетки или рецептора, которые приспособились к нему в |процессе эволюции, например, свет для фоторецепторов глаза).

Б) неадекватные

Если реакция на раздражитель является рефлекторной, то выделяют также:

А) безусловно-рефлекторные раздражители

Б) условно-рефлекторные

Законы раздражения. Параметры возбудимости.

Реакция клеток, тканей на раздражитель определяется законами раздражения

I .Закон «все или ничего»: При допороговых раздражениях клетки, ткани ответной реакции не возникает. При пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается ее усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца.

Акон силы: Чем больше сила раздражителя, тем сильнее ответная реакция Однако выраженностъ ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, умеющих различную возбудимость.

Закон силы-длительности. Между силой и длительностью действия раздражителя имеется определенная взаимосвязь. Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривой силы-длительности. По этой кривой можно определить ряд параметров возбудимости, а) Порог раздражения — это минимальная сила раздражителя, при которой возникает возбуждение.

Б) Реобаза — это минимальная сила раздражителя, вызывающая возбуждение при его действии в течение неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость ткани.

в) Полезное время — это минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение.

Г) Хронаксия — это минимальное время действия раздражителя силой в две реобазы, необходимое для возникновения возбуждения. Этот параметр предложил рассчитывать Л. Лапик, для более точного определения показателя времени на кривой силы-длительности. Чем короче полезное время или хронаксия, тем выше возбудимость и наоборот.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9625 — | 7310 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Полезное соседство Мы с Гераклом ехали в Москву, уютно устроившись в двухместном купе «международного» вагона. В академическом институте нам оплачивали такой проезд. Мы открыли чачу, распаковали закуску, и принялись за знакомое дело. Часа через два после отхода поезда,

А молоко – полезное? Мы пьем молоко потому, что молочная промышленность нам его навязывает, а не потому, что оно нам необходимо.После грудного возраста ни одно животное не пьет молока: ему уже не надо расти и развиваться с прежней быстротой. Мы единственные животные,

Кое-что полезное об интернете В ноябре 1998 года компания Wal-Mart подала в суд на Amazon, а также на некоторых инвесторов и клиентов, таких как Kleiner, Perkins, Caulfield и DrugStore.com за то, что те переманивали работников и бывших консультантов с целью получения конфиденциальной информации.

Полезное чтение для пап и мам Когда я работала над своей книгой, меня часто спрашивали: «Будете ли вы рекомендовать литературу, которую стоит прочесть каждому родителю?» Пожелания родителей я не забыла и решила составить полный список литературы, рекомендуемой мною к

Может ли Сегментация Намерений увеличить полезное время? Джерри: За прошедшие годы я часто говорил: Я бы хотел, чтобы меня было больше, чтобы я мог испытать все чудесные возможности, которые мне хочется. Можно ли как-то использовать Сегментацию Намерений, чтобы мы могли

Полезное свидание Ежику нравилась Белочка. Когда Ежик выглядывал из норки по своим важным делам, то видел, как она беззаботно скачет по веткам высокой сосны. Белочка жила как раз на сосне, под которой Ежик построил домик.«Как она здорово скачет, какая она веселая и какой у

3. Время и судьба. Время, свобода и детерминизм. Время и конец. Время и бесконечность Время связано с судьбой и внутренне воспринимается как судьба. Время в конце концов становится проблемой эсхатологической. Христианское мировоззрение, в отличие от мировоззрения

ПОЛЕЗНОЕ И БЕСПОЛЕЗНОЕ Творящий Благо спросил Чжуан-цзы:– Почему ты так часто говоришь о бесполезном?– С тем, кто познал бесполезное, можно говорить и о полезном, – ответил Чжуан-цзы. – Земля велика и широка, но человек пользуется ею в каждый момент времени лишь на

Полезное знание Немного статистики – Турция занимает площадь 779 452 000 кв. км.– По численности населения Турция находится на 16-м месте в мире – 62 610 252 чел.– В сельской местности проживает около 40 % населения.– ВНП на душу населения – 3048 $.– Государственный язык –

1.11.1. Как увеличить полезное время работы устройства подавления сотовых телефонов Перед каждым пользователем портативной электроники периодически встает вопрос: как увеличить время ее работы? Поэтому читателям стоит взять на вооружение следующие сведения о телефонах и

Полезное питание Кто будет возражать, что питание — основа жизненных сил? В этой главе мы расскажем и про белки-жиры-углеводы, зачем они нужны и в каких продуктах, и про витамины с микроэлементами, потому что нашему организму без них не жизнь, и какие продукты нужно есть, а

Полезное движение Если кто не знает, то лучше узнать и запомнить, что физическая активность и занятия с отягощением способствуют повышению тестостерона. Это очень актуально в наш гиподинамический век. Много ли ходит нынешний мужчина? Много ли тяжестей он поднимает? Когда

Полезное цветоводство Стала выращивать розы в палисаднике перед домом. И глазам приятно, и несомненная польза. Делаю по старым рецептам настойку цветков розы на водке. Ею полощу рот при зубной боли. А еще моему старику посоветовала тоже присоединяться. У него, стоматолог

1. Всему свое время, и время всякой вещи под небом: 2. время рождаться, и время умирать; время насаждать, и время вырывать посаженное; 3. время убивать, и время врачевать; время разрушать, и время строить; 4. время плакать, и время смеяться: время сетовать, и время плясать; 5. время разбрасывать кам

1. Всему свое время, и время всякой вещи под небом: 2. время рождаться, и время умирать; время насаждать, и время вырывать посаженное; 3. время убивать, и время врачевать; время разрушать, и время строить; 4. время плакать, и время смеяться: время сетовать, и время плясать; 5. время

источник

Физиология дословно — это учение о природе. Это наука, изучающая процессы жизнедеятельности организма, составляющих его физиологических систем, отдельных органов, тканей, клеток и субклеточных структур, механизмы регуляции этих процессов, а так же действие факторов внешней среды на динамику жизненных процессов.

История развития физиологии

Первоначально представления о функциях организма складывались на основе работ ученых Древней Греции и Рима: Аристотеля, Гиппократа, Галлена и др., а так же ученых Китая и Индии.

Физиология стала самостоятельной наукой в 17 веке, когда наряду с методом наблюдения за деятельностью организма началась разработка экспериментальных методов исследования. Этому способствовали работы Гарвея, изучившего механизмы кровообращения; Декарта, описавшего рефлекторный механизм.

В вв. физиология интенсивно развивается. Так, исследования возбудимости тканей провели К. Бернард, Лапик. Значительный вклад внесли ученые: Людвиг,Гельмгольц, Пфлюгер, Бэлл, Ленгли, Ходжкин и отечественные ученые: Овсяников, Ниславский, Цион, Пашутин, Введенский.

Отцом русской физиологии называют Ивана Михайловича Сеченова. Выдающееся значение имели его труды по изучению функций нервной системы (центральное или сеченовское торможение), дыхания, процессов утомления и др. В своей работе «Рефлексы головного мозга» (1863 г.) он развил идею о рефлекторной природе процессов, происходящих в мозге, включая процессы мышления. Сеченов доказал детерминированность психики внешними условиями, т.е. ее зависимость от внешних факторов.

Экспериментальное обоснование положений Сеченова осуществил его ученик Иван Петрович Павлов. Он расширил и развил рефлекторную теорию, исследовал функции органов пищеварения, механизмы регуляции пищеварения, кровообращения, разработал новые подходы в проведении физиологического опыта «методы хронического опыта». За работы по пищеварению в 1904 г. ему была присуждена Нобелевская премия. Павлов изучал основные процессы, протекающие в коре больших полушарий. Используя разработанный им метод условных рефлексов, он заложил основы науки о высшей нервной деятельности. В 1935 г. на всемирном конгрессе физиологов И.П. Павлов был назван патриархом физиологов мира.

Читайте также:  Полезна ли валерьянка кошкам

Цель, задачи, предмет физиологии

Опыты на животных дают много сведений для понимания функционирования организма. Однако, физиологические процессы, протекающие в организме человека, имеют значительные отличия. Поэтому в общей физиологии выделяют специальную науку — физиологию человека . Предметом физиологии человека является здоровый человеческий организм.

1. исследование механизмов функционирования клеток, тканей, органов, систем органов, организма в целом;

2. изучение механизмов регуляции функций органов и систем органов;

3. выявление реакций организма и его систем на изменение внешней и внутренней среды, а также исследование механизмов возникающих реакций.

Физиология — наука экспериментальная и ее основным методом является эксперимент:

1. Острый опыт или вивисекция («живосечение»). В его процессе под наркозом производят хирургическое вмешательство и исследуют функцию открытого или закрытого органа. После опыта выживания животного не добиваются. Длительность таких опытов — от нескольких минут до нескольких часов. Например, разрушение мозжечка у лягушки. Недостатками острого опыта являются малая продолжительность опыта, побочное влияние наркоза, кровопотери и последующая гибель животного.

2. Хронический опыт осуществляется путем проведения на подготовительном этапе оперативного вмешательства для доступа к органу, а после заживления приступают к исследованиям. Например, наложение фистулы слюнного протока у собаки. Эти опыты имеют продолжительность до нескольких лет.

3. Иногда выделяют подострый опыт . Его длительность — недели, месяцы.

Эксперименты на человеке коренным образом отличаются от классических:

1. большинство исследований проводят неинвазивным путем ( ЭКГ, ЭЭГ);

2. исследования, не наносящие вред здоровью испытуемого;

3. клинические эксперименты — изучение функций органов и систем при их поражении или патологии в центрах их регуляции.

Регистрация физиологических функций проводится различными методами:

2. графическая регистрация.

В 1847 г. Людвиг предложил кимограф и ртутный манометр для регистрации кровяного давления. Это

позволило свести к минимуму опытные ошибки и облегчить анализ полученных данных. Изобретение струнного гальванометра позволило зарегистрировать ЭКГ.

В настоящее время в физиологии большое значение имеет регистрация биоэлектрической активности тканей и органов и микроэлектронный метод. Механическую активность органов регистрируют с помощью механоэлектрических преобразователей. Структуру и функцию внутренних органов изучают с помощью ультразвуковых волн, резонанса, компьютерной томографии.

Все данные, полученные с помощью этих методик, поступают на электрические пишущие устройства и регистрируются на бумаге, фотопленке, в памяти компьютера и в дальнейшем анализируются.

Связь физиологии с другими науками

Физиология — теоретическая основа медицины. Она является фундаментом для решения проблем, связанных с сохранением здоровья и работоспособности человека в разных условиях существования и в разные возрастные периоды.

Чтобы распознать болезнь, нужно знать нормальное состояние функций организма, а чтобы ее лечить, нужно иметь представление о механизмах изменчивости функций организма. Поэтому физиология, являясь основополагающей биологической наукой, тесно связана и с другими науками.

Так, без знания законов физики, невозможно объяснение биоэлектрических явлений в тканях, цвето- и звуковосприятия. Без применения данных химии нельзя описать процессы обмена веществ, пищеварения и дыхания. Поэтому на стыке этих наук с физиологией выделились биохимия, биофизика. Физиология тесно связана с морфологическими науками: цитологией и гистологией, анатомией. Физиология связана с кибернетикой, которая изучает процессы управления внутри организма, механизмы обратной связи. Физиология раскрывает материальные основы некоторых высших функций человеческого мозга и тем самым тесно связана с психологией.

Математика, как способ обработки данных и моделирования процессов, широко применяется в физиологии. Физиология тесно связана с клиническими дисциплинами.

Основные разделы физиологии:

1. общая физиология изучает основные закономерности жизнедеятельности организма и механизмы основных процессов;

2. частная физиология — функции отдельных клеток, органов и физиологических систем. В ней выделяют физиологию мышечной ткани, физиологию сердца и др.;

3. разделы, имеющие специфические предметы исследования и использующие особые подходы: эволюционная, сравнительная физиология;

4. в физиологии человека выделяют прикладные разделы: возрастная, клиническая физиология, физиология труда и спорта, авиационная и космическая физиология;

5. некоторые разделы физиологии являются базой для психологии: физиология высшей нервной деятельности, физиология центральной нервной системы.

Механизм регуляции функций организма

Организм — сложная саморегулирующаяся система, состоящая из клеток, тканей, органов. Они в свою очередь образуют физиологические системы, которые выполняют комплекс однородных функций (например, система дыхания). Физиологические системы являются наследуемыми. Все органы этих систем имеют единые механизмы регуляции. Они координируют их деятельность и согласовывают работу физиологических систем друг с другом.

В организме выделяют 2 системы регуляции: нервную и гуморальную (физиологически более древняя) — регуляция посредством физиологически активных веществ, циркулирующих в жидкостях организма — крови, лимфе, межклеточной жидкости.

Факторы гуморальной регуляции:

1. гормоны желез внутренней секреции. Они образуются специальными инкреторными железами. Примеринсулин, тироксин;

2. продукты метаболизма и ионы;

3. местные или тканевые гормоны, образуются группами специальных клеток, находящихся в различных органах. Пример — ЖКТ. Они транспортируются тканевой жидкостью на небольшие расстояния. Пример – гистамин;

4. мембранные модуляторы. Действуют на уровне клеточных мембран (простагландины).

Особенности гуморальной регуляции:

1. низкая скорость регулирующего воздействия. Это связано с низкой скоростью протекания соответствующих жидкостей, например кровь проходит полный круг за 22 секунды;

2. медленное нарастание силы гуморального сигнала и медленное его снижение. Это связано с постепенным увеличением концентрации ФАВ и медленным их разрушением;

3. отсутствие для действия ФАВ, т.к. ФАВ действуют на многие органы и ткани, имеющие соответствующие рецепторы. Пример — тироксин.

Нервная регуляция функций.

Животные имеют специальные органы движения и им требуется быстрое и точное согласование сокращения мышц. В результате у животных в процессе эволюции сформировалась нервная регуляция. Нервная регуляция функций — это регуляция деятельности тканей, органов, физиологических систем путем рефлексов. Рефлекс — это ответная реакция организма на изменения внешней или внутренней среды, осуществляемая при участии ЦНС .

Впервые механистическое объяснение реакций организма дал в 17 веке Рене Декарт. Он предложил гипотетическую схему формирования непроизвольного движения. Термин «рефлекс» ввел в физиологию в 1771 г. Унцер, а Прохазка в 1800 г. разработал схему простейшей рефлекторной дуги.

И.М. Сеченов распространил рефлекторный принцип действия нервной системы на любую, в том числе и высшую нервную деятельность организма. Он показал, что рефлекс отражает сложные, но материальные процессы, протекающие в ЦНС во взаимодействии с внешней средой. И.М. Сеченовым предложены следующие положения:

1. всякая деятельность организма в конечном итоге сводится к движению;

2. всякое движение по своему происхождению есть рефлекс.

И.П. Павлов развил и экспериментально обосновал рефлекторную теорию. Он разделил все рефлексы по механизму образования на безусловные (врожденные) и условные (приобретенные).

Основные положения рефлекторной теории Павлов сформировал в работе «Ответ физиолога психологам»:

1. принцип детерминизма, взаимообусловленности. Нет действия без причины, т.е. всякий рефлекторный акт является результатом действия раздражителя на организм;

2. принцип анализа и синтеза. В ЦНС постоянно происходит анализ сигнала, а так же синтез с формированием ответной реакции;

3. принцип структурности. Любой процесс в НС имеет определенную структурную организацию. Морфологической основой любого рефлекса является рефлекторная дуга — это путь прохождения рефлекторной реакции (нервных импульсов).

Рефлекторная дуга соматического (двигательного) рефлекса состоит из следующих звеньев:

1. рецептор — воспринимает раздражение;

2. афферентное нервное волокно;

4. эфферентное нервное волокно;

5. эффекторный или рабочий орган.

В ряде рефлекторных дуг имеется 6 звено — это нейрон обратной связи (обратная афферентация). Он реагирует на рефлекторный ответ и контролирует его. В соматической дуге выделяют нейроны, выполняющие определенные функции. В простейшей моносинаптической рефлекторной дуге 2 нейрона — чувствительный и двигательный. В простой полисинаптической дуге выделяют: чувствительный нейрон, вставочный нейрон, исполнительный эфферентный нейрон. [рис. дуги с подписями]

В дуге вегетативного рефлекса имеются следующие звенья:

2. афферентное нервное волокно;

3. нервный центр — в боковых рогах спинного мозга;

4. преганглионарное нервное волокно;

6. постганглионарное нервное волокно;

Нервные центры разных уровней ЦНС связаны между собой.

Особенности нервной регуляции:

1. большая скорость регулирующего воздействия, импульсы по рефлекторной дуге распространяются быстро;

2. нервное волокно, идущее от нервного центра, заканчивается строго на определенном органе или эффекторе. Возможен быстрый самоконтроль и саморегуляция за счет нейрона обратной связи.

В организме нервная и гуморальная регуляции тесно связаны, образуют единую систему нейрогуморальной регуляции . Это обусловлено следующим:

1. ЖВС имеют вегетативную иннервацию;

2. в гипоталамусе вырабатываются нейрогормоны, они регулируют деятельность гипофиза, поэтому в системе происходит переключение нервных влияний на гуморальные;

3. ряд гормонов ЖВС оказывают влияние на НС — адреналин, норадреналин, тироксин;

4. ряд местных гормонов – нейромедиаторы – играют роль передатчиков сигнала от одного нейрона к другому, изменяют протекание рефлексов.

Биологические и функциональные системы

Развитие физиологии в вв. позволило осуществить глубинные механизмы, субмолекулярные процессы в организме. Было накоплено огромное количество аналитических данных о функциях клеток, тканей, органов и такой аналитический подход был оправдан и необходим.

Однако созрела необходимость объединить и систематизировать полученные данные для описания функций организма в целом. В гг. Берталанфи, используя кибернетические подходы, разработал общую теорию биологических систем:

1 принцип целостности. Невозможно свести свойства системы к простой сумме ее частей;

2. принцип структурности. Любую биологическую систему можно описать через ее структуру;

3. принцип иерархичности. Элементы системы подчинены друг другу сверху вниз, то есть вышележащие компоненты управляют нижележащими;

4. взаимосвязь системы со средой. Организм является открытой системой.

Берталанфи не выявил главного системообразующего фактора. Основные же системные закономерности живых организмов разработал П.К. Анохин.

В физиологии давно существует понятие физиологических систем – это комплекс морфологически и функционально объединенных органов, имеющих общие механизмы регуляции и выполняющих однообразные функции. Анохин установил, что в организме есть и другие системы, обеспечивающие поддержание параметров гомеостаза. Он назвал их функциональными системами.

Функциональная система — это совокупность органов и тканей, которые обеспечивают достижение цели в определенном виде жизнедеятельности . Эту цель он назвал результатом (ППР).

Им может быть тот или иной параметр гомеостаза, или результат поведения, удовлетворяющий биологической потребности, положительный результат социальной деятельности человека.

ППР является тем фактором, который объединяет различные органы и ткани организма в единое целое — функциональную систему, причем, не по морфологическому признаку, а по функциональному. Поэтому в функциональную систему могут входить органы и ткани из разных функциональных систем. Функциональные системы могут быть как наследуемыми, так и формирующимися в процессе жизнедеятельности.

Общая схема функциональной системы для поддержания гомеостаза включает следующие элементы: [рис. схемы]

Если параметры ППР отклоняются от нормальных, возбуждаются рецепторы ППР. Импульсы от них по афферентным путям идут в нервный центр, регулирующий данный параметр. От нервного центра импульс поступает к исполнительным органам, обеспечивающим поддержание этого параметра, включается вегетативная и гуморальная регуляция. Если при этом ППР не приходит к норме, то импульсы от нервного центра поступают в кору больших полушарий. Возбуждаются определенные нейроны и включается поведенческая регуляция. Изменяется целенаправленное поведение организма. В результате ППР приходит к исходному уровню. Кроме того на ППР влияет обмен веществ, а с другой стороны и ППР воздействует на метаболические процессы.

Возрастные особенности формирования и регуляции физиологических функций

В процессе развития организма происходят как количественные, так и качественные его изменения. В результате усложнения структуры появляются новые функции, например мозг ребенка приобретает способность

к абстрактоному мышлению. В основе возрастных изменений лежат:

1. гетерохронность или неравномерность созревания систем и органов;

2. этапные возрастные скачки;

3. акселерация, т.е. ускорение темпов биологического развития в определенные периоды.

Это обусловлено влиянием внешней среды, социальными факторами, урбанизацией жизни. На основе наблюдений за формированием функциональных систем в онтогенезе Анохин создал учение о системогенезе . Гетерохронность развития органов и систем хорошо видна на примере двигательного аппарата ребенка. Первоначально формируется рефлекс и двигательные единицы, обеспечивающие держание головы, затем обуславливающие способность сидеть, стоять, ходить.

Программа индивидуального развития выполняется за счет генетического аппарата. На определенных возрастных этапах происходит активация определенных генов, в результате включаются определенные функции организма и формируются новые функциональные системы. Это проявляется возрастным скачком или критическим периодом. Например, скачкообразное изменение структуры и функции органов, систем, которые наблюдаются в период полового созревания.

Акселерация – ускорение роста скелета, мышц, ускоренное половое созревание. Она связана с воздействием природной среды и социальных факторов на организм.

Формирование и развитие организма заканчивается к годам.(60) лет – зрелый возраст. В этот период функциональная активность органов и систем находится на одном уровне. Слет — пожилой возраст — выраженные инволюционные перестройки: снижается основной обмен, нарушается метаболизм в клетках, что и определяет продолжительность жизни человека.

После 75 лет наступает старость, резко снижается активность процессов, появляются старческие болезни, например атеросклероз. Возраст более 90 лет называется периодом долгожительства.

Механизмы регуляции с возрастом изменяются. У новорожденных ограничено количество сложных безусловных рефлексов и нет условных. Нервная регуляция несовершенна, но клетки и органы высоко чувствительны к влиянию ФАВ. По мере роста совершенствуется рефлекторная деятельность ЦНС. К первому году жизни формируются сложные рефлексы, обеспечивающие речь. Одновременно снижается чувствительность к ФАВ. У зрелого человекарегуляция высоко организована. В старости отмечается деструктивные изменения нервных окончаний, снижается количество рецепторов в клетках, снижается их восприимчивость к действию ФАВ.

В детском возрасте по В. Аршавскому выделяют следующие периоды:

2. грудного вскармливания – месяцев;

Читайте также:  Свежая слива чем полезна

3. смешанного питания – месяцев;

4. ясельного возраста – года;

5. дошкольного возраста – лет;

6. младшего школьного возраста – лет;

7. стершего школьного возраста – лет;

8. юношеского возраста – лет.

Принципы саморегуляции организма. Понятие о гомеостазе, гомеокинезе

Основным свойством живых систем является способность к саморегуляции , к созданию оптимальных условий для взаимодействия всех элементов организма и обеспечения его целостности.

Основные принципы саморегуляции :

1. принцип неравновесности или градиента — это свойство живых систем поддерживать динамическое неравновесное состояние, асимметрию относительно окружающей среды. Например, температура тела теплокровных животных может быть выше или ниже температуры окружающей среды;

2. принцип замкнутости контура регулирования. Каждый организм не просто отвечает на раздражение, а еще и оценивает соответствие ответной реакции действующему раздражителю. Чем сильнее раздражитель, тем больше ответная реакция. Принцип осуществляется за счет положительной и отрицательной обратной связи в нервной и гуморальной регуляции, т.е. контур регуляции замкнут в кольцо. Например, нейрон обратной афферентации в двигательных рефлекторных дугах;

3. принцип прогнозирования. Биологические системы способны прогнозировать результат ответной реакции на основе прошлого опыта. Например, избегание уже знакомых болевых раздражителей;

4. принцип целостности. Для нормального функционирования организма необходима его целостность.

Учение об относительном постоянстве внутренней среды организма было создано в 1878 году Клодом Бернаром. В 1929 году Кеннон показал, что способность к поддержанию гомеостаза организма является следствием работы его систем регулирования и предложил термин — гомеостаз .

Гомеостаз — постоянство внутренней среды (крови, лимфы, тканевой жидкости). Это устойчивость физиологических функций организма. Это основное свойство, отличающее живые организмы от неживого. Чем выше организация живого существа, тем более оно независимо от внешней среды. Внешняя среда — это комплекс факторов, определяющий экологический и социальный микроклимат, действующий на человека.

Гомеокинез — комплекс физиологических процессов, обеспечивающий поддержание гомеостаза . Он осуществляется всеми тканями, органами и системами организма, включая ФУС. Параметры гомеостаза являются динамическими и в нормальных пределах изменяются под влиянием факторов внешней среды. Пример: колебание содержания глюкозы в крови.

Живые системы не просто уравновешивают внешние воздействия, а активно противодействуют им. Нарушения гомеостаза приводит к гибели организма.

ФИЗИОЛОГИЯ И БИОФИЗИКА ВОЗБУДИМЫХ КЛЕТОК

Понятие о раздражимости, возбудимости и возбуждении. Классификация раздражителей

Раздражимость – это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением физиологических параметров клетки, ткани, организма, например, изменением метаболизма.

Возбудимость – это способность живой ткани отвечать на раздражение активной специфической реакцией – возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.о., возбудимость характеризует специализированные ткани – нервную, мышечные, железистые, которые называются возбудимыми .

Возбуждение – это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д.

Возбудимые ткани обладают проводимостью . Это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы.

Раздражитель – это фактор внешней или внутренней среды действующий на живую ткань.

Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением . Все раздражители делятся на следующие группы:

а) физические (электричество, свет, звук, механические воздействия и т.д.); б) химические (кислоты, щелочи, гормоны и т.д.);

в) (осмотическое давление, парциальное давление газов и т.д.); г) биологические (пища для животного, особь другого пола); д) социальные (слово для человека).

2. По месту воздействия: а) внешние (экзогенные);

а) подпороговые (не вызывающие ответной реакции); б) пороговые (раздражители минимальной, силы, при которой возникает возбуждение); в) сверхпороговые (силой выше пороговой).

4. По физиологическому характеру:

а) адекватные (физиологичные для данной клетки или рецептора, которые, приспособились к нему в процессе эволюции, например, свет для фоторецепторов глаза);

Если реакция на раздражитель является рефлекторной, то выделяют также: а) раздражители; б)

Законы раздражения. Параметры возбудимости

Реакция клеток, тканей на раздражитель определяется законами раздражения:

1) Закон «все или ничего» : При допороговых раздражениях клетки ответной реакции не возникает, при пороговой силе раздражителя развивается максимальная ответная реакция, поэтому увеличение силы раздражения выше пороговой не сопровождается еѐ усилением. В соответствии с этим законом реагирует на раздражения одиночное нервное и мышечное волокно, сердечная мышца.

2) Закон силы : Чем больше сила раздражителя, тем сильнее ответная реакция. Однако выраженность ответной реакции растет лишь до определенного максимума. Закону силы подчиняется целостная скелетная, гладкая мышца, так как они состоят из многочисленных мышечных клеток, имеющих различную возбудимость.

3) Закон Чем сильнее раздражитель, тем меньшее время требуется для возникновения ответной реакции. Зависимость между пороговой силой и необходимой длительностью раздражения отражается кривойПо этой кривой можно определить ряд параметров возбудимости:

а) Порог раздражения – это минимальная сила раздражителя, при которой возникает возбуждение.

б) Реобаза – это минимальная сила раздражителя, вызывающая возбуждение при его действии в течение неограниченно долгого времени. На практике порог и реобаза имеют одинаковый смысл. Чем ниже порог раздражения или меньше реобаза, тем выше возбудимость ткани.

в) Полезное время – это минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение.

г) Хронаксия – это минимальное время действия раздражителя силой в две реобазы, необходимое для возникновения возбуждения. Этот параметр предложил рассчитывать Л.Лапик, для более точного определения показателя времени на кривойЧем короче полезное время или хронаксия, тем выше возбудимость, и наоборот.

В клинической практике реобазу и хронаксию определяют с помощью метода хроноксиметрии для исследования возбудимости нервных стволов.

4) Закон градиента (аккомодации). Реакция ткани на раздражение зависит от его градиента, т.е. чем быстрее нарастает сила раздражителя во времени, тем быстрее возникает ответная реакция. При низкой скорости нарастания силы раздражителя растет порог раздражения. Поэтому, если сила раздражителя возрастает очень медленно, возбуждения не будет. Это явление называется аккомодацией .

Физиологическая лабильность (подвижность) – это большая или меньшая частота реакций, которыми может отвечать ткань на ритмическое раздражение. Чем быстрее восстанавливается ее возбудимость после очередного раздражения, тем выше ее лабильность. Определение лабильности предложено Н.Е.Введенским. Наибольшая лабильность у нервов, наименьшая – у сердечной мышцы.

Действие постоянного тока на возбудимые ткани

Впервые закономерности действия постоянного тока на нерв препарата исследовал в 19

веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под отрицательным электродом, т.е. под катодом возбудимость повышается, а под положительным – анодом — снижается. Это называется законом действия постоянного тока . Изменение возбудимости ткани (например, нерва) под действием постоянного тока в

области анода или катода называется физиологическим электротоном . В настоящее время установлено, что под действием отрицательного электрода – катода – потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном . Под положительным – анодом – он возрастает. Возникает физический анэлектротон . Так как, под катодом мембранный потенциал (МП) приближается к критическому уровню деполяризации (КУД), возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от КУД, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мс и менее) МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами.

Постоянный ток широко используется в клинике для лечения и диагностики. Например, с помощью него производится электростимуляция нервов и мышц, физиопроцедуры: ионофорез и гальванизация.

Строение и функции цитоплазматической мембраны клеток

Цитоплазматическая клеточная мембрана состоит из трех слоев:

• среднего — бимолекулярного слоя липидов;

Толщина мембраны нм . Бимолекулярный слой липидов является матриксом мембраны. Липидные молекулы его обоих слоев взаимодействуют с белковыми молекулами, погруженными в них. От 60 до 75% липидов мембраны составляют фосфолипиды,холестерин. Белки представлены в основном гликопротеинами. Различают интегральные белки , пронизывающие всю мембрану, и периферические , находящиеся на наружной или внутренней поверхности.

Интегральные белки образуют ионные каналы, обеспечивающие обмен определенных ионов между вне- и внутриклеточной жидкостью. Они также являются ферментами, осуществляющими противоградиентный перенос ионов через мембрану.

Периферическими белками являются хеморецепторы наружной поверхности мембраны, которые могут взаимодействовать с различными ФАВ.

1. обеспечивает целостность клетки как структурной единицы ткани;

2. осуществляет обмен ионов между цитоплазмой и внеклеточной жидкостью;

3. обеспечивает активный транспорт ионов и других веществ в клетку и из нее;

4. производит восприятие и переработку информации, поступающей к клетке в виде химических и электрических сигналов.

Механизмы возбудимости клеток. История исследования биоэлектрических явлений

В основном передаваемая в организме информация имеет вид электрических сигналов (например, нервные импульсы). Впервые наличие животного электричества установил физиолог Л. Гальвани в 1786 г. С целью исследования атмосферного электричества он подвешивал препараты лапок лягушек на медном крючке. Когда эти лапки касались железных перил балкона, происходило сокращение мышц. Это свидетельствовало о действииэлектричества на нервпрепарата. Гальвани посчитал, что это обусловлено наличием электричества в самих живых тканях. Однако А. Вольта установил, что источником электричества является место контакта двух разнородных металлов – меди и железа.

В физиологии первым классическим опытом Гальвани считается прикосновение к нервупрепарата биметаллическим пинцетом, сделанным из меди и железа. Чтобы доказать свою правоту, Гальвани произвел второй опыт . Он набрасывал конец нерва, иннервирующегопрепарат, на разрез его мышцы. В результате возникало ее сокращение. Однако и этот опыт не убедил современников Гальвани. Поэтому другой итальянец Маттеучи произвел следующий эксперимент. Он накладывал нерв одного нервномышечного препарата лягушки на мышцу второго, которая сокращалась под действием раздражающего тока. В результате первый препарат тоже начинал сокращаться. Это свидетельствовало о передаче электричества (ПД) от одной мышце к другой. Наличие разности потенциалов между поврежденным и неповрежденным участками мышцы впервые точно установил в 19 веке с помощью струнного гальванометра (амперметра) Маттеучи. Причем разрез имел отрицательный заряд, а поверхность мышцы положительный.

Классификация и структура ионных каналов цитоплазматической мембраны

Первый шаг в изучении причин возбудимости клеток сделал в своей работе «Теория мембранного равновесия» в 1924 г. английский физиолог Донанн. Он теоретически установил, что разность потенциалов внутри клетки и вне ее, т.е. потенциал покоя или мембранный потенциал (МП), близка к калиевому равновесному потенциалу. Это потенциал, образующейся на полупроницаемой мембране, разделяющей растворы с разной концентрацией ионов калия, один из которых содержит крупные анионы, не проникающие через мембрану. Его расчеты уточнил Нернст . Он вывел уравнение диффузионного потенциала, для калия он будет равен:

Е К =58 lg ([K + ] out / [K + ] In ) = 58 lg 40мМ/400 мМмВ (такова теоретически рассчитанная величина МП).

Экспериментально механизмы возникновения разности потенциалов между внеклеточной жидкостью и цитоплазмой, а также возбуждения клеток установили в 1939 году в Кембридже Ходжкин и Хаксли . Они исследовали гигантское нервное волокно (аксон) кальмара (диаметр 1мм, длинна – 1м) и обнаружили, что внутриклеточная жидкость нейрона содержит 400 мМ калия, 50 мМ натрия, 100 мМ хлора и очень мало кальция. Во внеклеточной жидкости содержалось всего 10 мМ калия, 440 мМ натрия, 560 мМ хлора и 10 мМ кальция. Т.о., внутри клеток имеется избыток калия, а вне их натрия и кальция. Это обусловлено тем, что в клеточную мембрану встроены ионные каналы, регулирующие проницаемость мембраны для ионов натрия, калия, кальция и хлора.

Все ионные каналы подразделяются на следующие группы: 1. По избирательности:

а) с елективные , т.е. специфические . Эти каналы проницаемы для строго определенных ионов; б) малоселективные , неспецифические , не имеющие определенной ионной избирательности. Их в мембране

2. По характеру пропускаемых ионов: а) калиевые; б) натриевые; в) кальциевые; г) хлорные.

3. По скорости инактивации, т.е. закрывания:

а) быстроинактивирующиеся , т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление;

б) медленноинактирующиеся . Их открывание вызывает медленное снижение МП и медленное его восстановление.

4. По механизмам открывания:

а) потенциалзависимые , т.е. те которые открываются при определенном уровне потенциала мембраны; б) хемозависимые , открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически

активных веществ (ФАВ) (нейромедиаторов, гормонов и т.д).

В настоящее время установлено, что ионные каналы имеют следующее строение :

1. Селективный фильтр , расположенный в устье канала. Он обеспечивает прохождение через канал строго определенных ионов.

2. Активационные ворота , которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активационные ворота потенциалзависимых каналов имеется сенсор, который открывает их при определенном уровне МП.

3. Инактивационные ворота , обеспечивающие закрывание канала и прекращение проведения ионов по каналу на определенном уровне МП.

Неспецифические ионные каналы не имеют ворот.

Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением активационных (m) и инактивационных (h) ворот:

1. закрытом , когда активационные закрыты, а инактивационные открыты;

2. активированном , и те и другие ворота открыты;

3. инактивированном , активационные ворота открыты, а инактивационные закрыты Суммарная проводимость для того или иного иона определяется числом одновременно открытых

соответствующих каналов. В состоянии покоя открыты только калиевые каналы, обеспечивающие поддержание определенного мембранного потенциала и закрыты натриевые. Поэтому мембрана избирательно проницаема для калия и очень мало для ионов натрия и кальция, за счет имеющихся неспецифических каналов. Соотношение проницаемости мембраны для калия и натрия в состоянии покоя составляет 1:0,04. Ионы калия поступают в цитоплазму и накапливаются в ней. Когда их количество достигает определенного предела, они по градиенту концентрации начинают выходить через открытые калиевые каналы из клетки. Однако уйти от наружной поверхности клеточной мембраны они не могут. Там их удерживает электрическое поле отрицательно заряженных анионов, находящихся на внутренней поверхности. Это сульфат, фосфат и нитрат анионы, анионные группы аминокислот, для которых мембрана не проницаема. Поэтому на наружной поверхности мембраны скапливаются положительно заряженные катионы калия, а на внутренней отрицательно заряженные анионы. Возникает трансмембранная разность потенциалов.

Читайте также:  Полезные приложения для андроид магнитолы

Выход ионов калия из клетки происходит до тех пор, пока возникший потенциал с положительным знаком снаружи не уравновесит концентрационный градиент калия, направленный из клетки. Т.е., накопившиеся на наружной стороне мембраны ионы калия не будут отталкивать внутрь такие же ионы. Возникает определенный потенциал мембраны, уровень которого определяется проводимостью мембраны для ионов калия и натрия в состоянии покоя. В среднем, величина потенциала покоя близка к калиевому равновесному потенциалу Нернста. Например, МП нервных клеток составляет мВ,мВ, гладких мышцмВ, железистых клетокмВ. Меньшая реальная величина МП клеток, объясняется тем, что его величину

уменьшают ионы натрия, для которых мембрана незначительно проницаема и они могут входить в цитоплазму. С другой стороны, отрицательные ионы хлора, поступающие в клетку, несколько увеличивают МП.

Так как мембрана в состоянии покоя незначительно проницаема для ионов натрия, необходим механизм выведения этих ионов из клетки. Это связано с тем, что постепенное накопление натрия в клетке привело бы к нейтрализации мембранного потенциала и исчезновению возбудимости. Этот механизм называется натрийкалиевым насосом . Он обеспечивает поддержание разности концентраций калия и натрия по обе стороны мембраны.

насос – это ферментЕго белковые молекулы встроены в мембрану. Он расщепляет АТФ и использует высвобождающуюся энергию для противоградиентного выведения натрия из клетки и закачивания калия в неѐ. За один цикл каждая молекулавыводит 3 иона натрия и вносит 2 иона калия. Так как в клетку поступает меньше положительно заряженных ионов, чем выводится из неѐ,намВ увеличивает мембранный потенциал.

В мембране имеются следующие механизмы трансмембранного транспорта ионов и других веществ:

1. Активный транспорт . Он осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятсянасос, кальциевый насос, хлорный насос.

2. Пассивный транспорт . Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неѐ по калиевым каналам.

3. Сопряженный транспорт . Противоградиентный перенос ионов без затрат энергии. Например, таким образом происходитобмен ионов. Он происходит за счет разности концентрации других ионов.

Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкм стеклянный микроэлектрод. Он заполняется солевым раствором. Второй электрод помещается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец.

Механизм генерации потенциала действия (ПД)

Дальнейшие исследования Ходжкина и Хаксли показали, что при возбуждении аксона кальмара возникает быстрое колебание мембранного потенциала, которое на экране осциллографа имело форму пика (spike). Они назвали это колебание потенциалом действия (ПД) . Так как электрический ток для возбудимых мембран является адекватным раздражителем, ПД можно вызвать, поместив на наружную поверхность мембраны отрицательный электрод – катод, а внутреннюю положительный — анод. Это приведет к снижению величины заряда мембраны – ее деполяризации. При действии слабого допорогового тока происходит пассивная деполяризация, т.е. возникает катэлектротон. Если силу тока увеличить до определенного предела, то в конце периода его воздействия на плато катэлектротона появится небольшой самопроизвольный подъѐм – местный или локальный ответ . Он является следствием открывания небольшой части натриевых каналов, находящихся под катодом. При токе пороговой силы МП снижается до критического уровня деполяризации (КУД), при котором начинается генерация потенциала действия. Он находится для нейронов примерно на уровне – 50 мВ.

На кривой потенциала действия выделяют следующие фазы:

1. Локальный ответ (местная деполяризация), предшествующий развитию ПД.

2. Фаза деполяризации . Во время этой фазы МП быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше нуля. Поэтому мембрана приобретает противоположный заряд – внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала . Продолжительность этой фазы у нервных и мышечных клетокмс.

3. Фаза реполяризации . Она начинается при достижении определенного уровня МП (примерно +20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя. Длительность фазымс.

4. Фаза следовой деполяризации или следового отрицательного потенциала. Период, когда возвращение МП к потенциалу покоя временно задерживается. Он длитсямс.

5. Фаза следовой гиперполяризации или следового положительного потенциала. В эту фазу МП на некоторое время становится выше исходного уровня ПП. Ее длительностьмс.

Амплитуда ПД скелетных мышц в среднем мВ, нейроновмВ, гладкомышечных клетокмВ. При возбуждении нейронов ПД возникает в начальном сегменте аксона – аксонном холмике.

Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота натриевых каналов открываются и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую деполяризацию. В эту фазу открываются и быстрые, и медленные натриевые каналы. Т.е. натриевая проницаемость мембраны резко возрастает. Причем от чувствительности активационных ворот зависит величина КУД (чем она выше, тем ниже КУД, и наоборот).

Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (+20 мВ), сила концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается.

Резко усиливается выход ионов калия, т.е. калиевый выходящий ток . В некоторых клетках это происходитактивации специальных каналов калиевого выходящего тока. Этот ток, направленный из клетки, служит для быстрого смещения МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возрастание МП приводит к закрыванию и активационных ворот натриевых каналов, что еще больше снижает натриевую проницаемость мембраны и ускоряет реполяризацию. Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов остается открытой.

Следовая гиперполяризация связана с повышенной после генерации ПД калиевой проводимостью мембраны и тем, что более активно работает насос, выносящий вошедшие в клетку во время ПД ионы натрия.

Изменяя проводимость быстрых натриевых и калиевых каналов, можно влиять на генерацию ПД, а, следовательно, на возбуждение клеток. При полной блокаде натриевых каналов, например, ядом рыбы тетродонта – тетродотоксином , клетка становится невозбудимой. Это используется в клинике. Такие местные анестетики, как новокаин, дикаин, лидокаин тормозят переход натриевых каналов нервных волокон в открытое состояние. Поэтому проведение нервных импульсов по чувствительным нервам прекращается, наступает обезболивание (анестезия) органа. При блокаде калиевых каналов затрудняется выход ионов калия из цитоплазмы на наружную поверхность мембраны, т.е. восстановление МП. Поэтому удлиняется фаза реполяризации. Этот эффект блокаторов калиевых каналов также используется в клинической практике. Например, один из них хинидин , удлиняя фазу реполяризации кардиомиоцитов, урежает сердечные сокращения и нормализует сердечный ритм.

Также следует отметить, что чем выше скорость распространения ПД по мембране клетки или ткани, тем выше ее проводимость.

Соотношение фаз ПД и возбудимости

Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением . В фазу реполяризации ПД, когда открываются все натриевые каналы и ионы натрия лавинообразно устремляются в клетку, никакой, даже сверхсильный, раздражитель не может стимулировать этот процесс. Поэтому фазе деполяризации соответствует фаза полной невозбудимости или абсолютной рефрактерности , т.e. в фазу реполяризации все большая часть натриевых каналов закрывается. Однако они могут вновь открываться при действии сверхпорогового раздражителя. Т.е. возбудимость начинает вновь повышаться. Этому соответствует фаза относительной невозбудимости или

Во время следовой деполяризации МП находится у критического уровня, поэтому даже допороговые стимулы могут вызвать возбуждение клетки. Следовательно в этот момент ее возбудимость повышена. Эта фаза называется фазой экзальтации или супернормальной возбудимости.

В момент следовой гиперполяризации МП выше исходного уровня, т.е. дальше КУД и ее возбудимость снижена. Она находится в фазе субнормальной возбудимости .

Следует отметить, что явление аккомодации также связано с изменением проводимости ионных каналов. Если деполяризующий ток нарастает медленно, то это приводит к частичной инактивации натриевых и активации калиевых каналов. Поэтому развития ПД не происходит.

В организме имеются 3 типа мышц: скелетные или гладкие и сердечная. Скелетные мышцы обеспечивают перемещение тела в пространстве, поддержание позы тела за счет тонуса мышц конечностей и тела. Гладкие мышцы необходимы для перистальтики органовтракта, мочевыводящей системы, регуляции тонуса сосудов, бронхов и т.д. Сердечная мышца служит для сокращения сердца и перекачивания крови. Все мышцы обладают возбудимостью, проводимостью и сократимостью, а сердечная и многие гладкие мышцы автоматией – способностью к самопроизвольным сокращениям.

Ультраструктура скелетного мышечного волокна

Двигательные единицы . Основнымэлементомаппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт –синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон.

Скелетные мышцы состоят из мышечных пучков, образованных большим количеством мышечных волокон. Каждое волокно – это клетка цилиндрической формы диаметром мкм и длиной от 5 до 400 мкм. Оно имеет клеточную мембрану – сарколемму. В саркоплазме находится несколько ядер, митохондрии, образования саркоплазматического ретикулума (СР) и сократительные элементы – миофибриллы. Саркоплазматический ретикулум имеет своеобразное строение. Он состоит из системы поперечных, продольных трубочек и цистерн.

источник

Полезное время это минимальное время, в течение которого должна действовать сила тока в 1 реобазу, чтобы вызвать ответную реакцию.

Эта мера возбудимости учитывает и силу раздражителя, и время его действия.

Эта мера возбудимости не нашла своего применения в медицинской практике, так как небольшое отклонение одного из параметров приводило к большой ошибке в конечном показателе.

3.Применение в медицинской практике нашла другая мера возбудимости – хронаксия.

Хронаксия это минимальное время, в течение которого должна действовать сила тока в 2 (две) реобазы, чтобы вызвать ответную реакцию.

Посредством хронаксии определяют возбудимость нервов, мышц, синапсов. Этим методом можно определить, где же наступило поражение нервно-мышечной системы: на уровне мышцы, нервов, синапсов или центральных образований.

Рефрактерность (невозбудимость) это способность клетки, ткани резко снижать свою возбудимость (т.е. способность к возбуждению) при формировании возбуждения (потенциала действия).

Возбудимость характеризуется разностью между величиной потенциала мембраны (ПМ) и критическим уровнем деполяризации (КУД).

Периоду рефрактерности предшествет период супернормальной возбудимости, связанный с уменьшением разности между ПМ и КУД в начальном периоде формирования возбуждения.

При достижении ПМ критического уровня деполяризации (КУД) наступает максимальная проницаемость мембраны для натрия.

Если в момент формирования пика ПД (входящий натриевый ток) нанести новое раздражение на клетку, то клетка на него не ответит, каким бы сильным раздражителем не пользовались.

Отсутствие ответной реакции на повторное раздражение (рефрактерность, невозбудимость)связано с тем, что для формирования нового ПДнеобходимо за сверхкороткий период удалить поступивший натрий из клетки и вновь активировать входящий натриевый ток. Это практически невозможно.

В этот момент возбудимость у клетки будет равна нолю (период абсолютной рефрактерности). По мере реполяризации будет происходить процесс восстановления возбудимости. Это называется периодом относительной рефрактерности (клетку могут возбудить только чрезвычайно сильные раздражители).

За периодом относительной рефрактерности следует период субнормальной возбудимости. Ее возникновение связано с гиперполяризацией мембраны, которая возникает вследствие инертности ионных процессов реполяризации.

В отсутствии действия раздражителя клетка, ткань находится в состоянии покоя.В этом состоянии биологические структуры не проявляют своих специфических функций.

При действии раздражителей необходимой силы биологические структуры (клетки, ткани) переходят из состояния покоя в активное состояние.

Существуют две формы активного состояния:

— возбуждение;

— торможение.

Возбуждение – ответная рекция биологических структур (клеток, тканей) на действие раздражителя, для которой характерна функциональная активность этих структур.

Возбуждениебиологических структур имеет:

— специфические признаки;

— неспецифические признаки.

Специфические признаки возбуждения.

Специфические признаки возбуждения этохарактерные чертыпроявления функций,присущих данной биологической структуре,(для секреторных клеток-секреция, для мышечных клеток-сокраще­ние и т.д).

Неспецифические признаки возбуждения.

Неспецифические признаки возбуждения это процессы, которые протекают во всех биологических структурах при действии раздражителей.

К таким признакам относятся:

— изменение проницаемости клеточных мембран для ионов;

— формирование потенциалов действия;

— формирование токов действия;

Возбуждение может быть двух видов:

местное возбуждение (локальный ответ);

импульсное возбуждение (ток действия, распространяющееся возбуждение).

Местное возбуждение (локальный ответ) возникает либо под действием подпороговых раздражителей, либо как начальный компонент потенциала действия.

Характерные признаки локального ответа:

— отсутствует латентный (скрытый) период;

— возникает сразу после действия раздражителя;

— отсутствует порог раздражения;

— величина локального ответа пропорциональна силе раздражителя;

— отсутствует рефрактерный период;

— локальный ответ не распространяется;

— постепенно затухает.

Импульсное возбуждение (ток действия, распространяющееся возбуждение).

Характерные признаки импульсного возбуждения (тока действия, распространяющегося возбуждения):

— наличие латентного периода;

— наличие порога раздражения;

— наличие рефрактерного периода;

— величина возбуждения не зависит от силы раздражения;

— распространение без декремента (ослабления).

Своеобразной формой возбуждения является автоматия.

Автоматияэто способность клетки самопроизвольно (спонтанно) возбуждаться через определенные интервалы времени.

Возникновнение автоматии обусловлено циклическими изменениями обмена веществ в клетке, приводящими к активации процессов, ответственных за возбуждение клетки.

Торможениевозникает при действии раздражителя и проявляется в угнетении функций биологических структур.

— первичное торможение;

— вторичное торможение.

Первичное торможения возникает без предварительного возбуждения. Вторичное торможение инициировано предшествующим возбуждением.

источник

Источники:
  • http://studopedia.ru/16_33627_v-poleznoe-vremya---eto-minimalnoe-vremya-deystviya-razdrazhitelya-siloy-v-odnu-reobazu-za-kotoroe-voznikaet-vozbuzhdenie.html
  • http://slovar.wikireading.ru/1482366
  • http://studfiles.net/preview/3568735/
  • http://studepedia.org/index.php?vol=1&post=109300