Меню Рубрики

Полезные свойства радиации

Радиоактивное (ионизирующее) излучение приносит вред в тех случаях, когда оно происходит бесконтрольно и в чрезмерных объёмах. При нормальных условиях его уровень не может вызвать сколько-нибудь заметных отклонений здоровья.

Радиация может даже приносить пользу. Все знают о широком применении её в энергетике, но есть и целый ряд других сфер. Например, в медицине с помощью целенаправленно облучения борются со злокачественными новообразованиями и некоторыми иными болезнями (например, системной красной волчанкой), диагностируют их на раннем этапе (благодаря эффекту усиленного, в сравнении с нормальными тканями, поглощения меченых изотопов раковыми клетками).Радиоактивные,такие как радоновые, водные минеральные источники стали основой многих знаменитых курортов, таких как Баден-Баден и Белокуриха.

Под воздействием радиации на многих предприятиях ускоряется процесс выделки кожи.

В сельском хозяйстве предельно малые (на доли процента превышающие фоновое излучение) методы обработки радиацией улучшают всхожесть и урожайность растений, ускоряют их прорастание, уменьшают раннюю смертность цыплят, укрепляют иммунитет к бактериям и вирусам у сельскохозяйственных животных.

Ecololocate Экология

Полезно знать

Основы биогеоценологии

Совокупность живых организмов, населяющих биотоп, образует биоценоз.

Понятие и значение биосферы

Жизнь, как особое, очень сложное явление природы оказывает на окружающий мир самое разнообразное воздействие.

Полезное применение радиоактивности

В настоящее время радиация находит полезное применение не только для получения электрической и тепловой энергии. Полезные свойства радиации нашли применение в различных областях естествознания, технике, медицине:

Ø в промышленности:

o гамма-дефектоскопия – контроль целостности различных сварных металлических оболочек (корпусов реакторов, подводных и надводных кораблей, трубопроводов и т. п.), нейтронный каротаж;

o разведка нефти и воды;

Ø в сельском хозяйстве:

o предпосевная обработка семян, повышающая урожайность;

o обеззараживание стоков животноводческих ферм;

Ø в космонавтике:

o создание атомных источников энергии спутников, орбитальных комплексов;

Ø в криминалистике:

o нанесение специальных меток на предметы хищения, облегчающие их поиск, идентификацию и изобличение преступников;

o определение возраста геологических пород – уран-свинцовым методом оценен возраст Земли (около 4,5 млрд. лет);

o радиоуглеродный метод позволяет установить возраст предметов, имеющих биологическую природу, с точностью 50 лет в диапазоне 1000 – 50000 лет: например, на основе измерения содержания углерода в веревочных сандалиях, найденных в пещере в штате Орегон, был подтвержден факт существования 9000 лет назад доисторических людей на территории США;

o диагностика заболеваний;

o лечение онкологических больных;

o стерилизация медицинских инструментов и материалов.

Открытие радиоактивности оказало огромное влияние на развитие науки и техники, оно ознаменовало начало эпохи интенсивного изучения свойств и структуры веществ. Новые перспективы, возникшие в энергетике, промышленности, военной области, медицине и других областях человеческой деятельности благодаря овладению ядерной энергией, были вызваны к жизни обнаружением способности химических элементов к самопроизвольным превращениям. Однако, наряду с положительными факторами использования свойств радиоактивности в интересах человечества все равно можно привести примеры и негативного их вмешательства в нашу жизнь. К числу таких относятся затонувшие корабли и подводные лодки с атомными двигателями и атомным оружием, захоронение радиоактивных отходов в море и на земле, аварии на атомных электростанциях и др.

В настоящее время достигнуты значительные успехи в решении проблемы использования атомной энергии в народном хозяйстве. Основным энергопроизводящим узлом атомных устройств, использующих внутриядерную энергию, является реактор. В активной зоне реактора созданы необходимые условия для возникновения и поддержания на определенном уровне цепной реакции деления тяжелых ядер. Высвобождающаяся при этом тепловая энергия аккумулируется теплоносителем и выносится за пределы активной зоны.

Одной из важнейших задач обеспечения радиационной безопасности на ядерных реакторах является надежное удержание образуемых при их работе огромных количеств радиоактивных веществ. Удержание продуктов деления внутри реактора осуществляется применением системы трех барьеров (оболочка твэла, первый контур, внешняя защита реактора).

Другие статьи

Зарождение и эволюция биосферы Земли
Одной из наиглавнейших особенностей планеты Земля есть существование на ней жизни — этим она отличается от всех своих соседок-планет. Появление и развитие жизни на Земле — это уникальное .

Создание научной методологии проектирования нейтрализатора современных автомобилей
Загрязнение воздуха вредными выбросами автомобилей в конце ХХ века стало одной из глобальных экологических проблем. Путь ее решения только один — автомобиль должен стать экологически чистым. .

Промышленные предприятия и окружающая среда
Природные ресурсы – это средства к существованию, без которых человек не может жить и которые он находит в природе. Это вода, почвы, растения, животные, минералы, которые мы используем непо .

Польза и вред радиации

Описание презентации по отдельным слайдам:

Польза и вред радиации Презентация Галушко Михаила Школа: МБОУ МПЛ 2013 год.

Цель работы Ответить на вопросы: Что такое радиация? В чём заключается польза радиации? Как она может быть использована? Каково воздействие радиации на организм человека? На окружающую среду? Сделать вывод о том, полезно и безопасно ли для человечества исследование радиации.

Радиация – излучение. В самом общем смысле – потоки частиц различных видов, способные ионизировать вещество. Радиоактивность (радиоактивное излучение) – способность атомов некоторых химических элементов к самопроизвольному излучению

Источники излучения Природные Искусственные Спонтанный распад нуклидов, термоядерные реакции на солнце, индуцированные ядерные реакции, Космические лучи Искусственные радионуклиды, ядерные реакторы, ускорители элементарных частиц, рентген – аппарат

Польза радиации Получение энергии с помощью АЭС.

Из всех отраслей хозяйственной деятельности человека энергетика оказывает самое большое влияние на нашу жизнь. За 30 лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт.

Мало у кого вызывает сомнения то, что атомная энергетика заняла прочное место в энергетическом балансе человечества.

Применение в дефектоскопии

Применение в радиохимии

Применение радиации в медицине

Вред радиации Воздействие радиации на человека

Проблема захоронения ядерных отходов

Защита от радиации

Также я проверил радиационный фон в школе – он не превышает значения в 0.15мкЗв/ч. 31 янв 1 фев 2 фев 3 фев 4 фев 5 фев 0.08 мкЗв/ч 0.07 мкЗв/ч 0.09 мкЗв/ч 0.08 мкЗв/ч 0.10 мкЗв/ч 0.08 мкЗв/ч столовая 1 этаж рекреация 2 этаж рекреация 3 этаж рекреация 4 этаж рекреация Спортивный зал 0.13 мкЗв/ч 0.15 мкЗв/ч 0.11 мкЗв/ч 0.12 мкЗв/ч 0.09 мкЗв/ч 0.11 мкЗв/ч

Спасибо за внимание!

Чтобы скачать материал, введите свой E-mail, укажите, кто Вы, и нажмите кнопку

Нажимая кнопку, Вы соглашаетесь получать от нас E-mail-рассылку

Если скачивание материала не началось, нажмите еще раз «Скачать материал».

Польза и вред радиации. Тезисы

(2слайд) Радиация играет огромную роль в нашем Мире. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины, энергетики и в других различных отраслях.

Однако исследования радиации показали и негативные стороны свойств радиоактивных элементов. Факт того, что радиация может быть очень опасной, беспокоит общественность. Хотя в целом, эти волнения не очень оправданы и в основном объясняются ложной информацией или непросвещённостью.

(3 слайд) Я думаю, эта тема очень актуальна, потому-что ядерные технологии это наше будущее и они активно развиваются.

Цели моей работы таковы: Ответить на вопросы – 1.Что такое радиация?

2. В чём заключается польза радиации? Как она может быть использована?

3. Каково воздействие радиации на организм человека? На окружающую среду?

И в заключении сделать вывод о том, полезно и безопасно ли для человечества исследование радиации.

(4 слайд) Итак, радиация – излучение. В самом общем смысле – потоки частиц различных видов, способные ионизировать вещество.

А радиоактивность — это способность атомов некоторых химических элементов к самопроизвольному излучению.

(5 слайд) Наиболее значимы гамма и рентген излучение, на этом сладе они показаны в самом верху. У них короткие волны, но высокая энергия фотона. Обладают проникающими свойствами, то есть способны без существенного поглощения проходить через вещества. Невидимы.

Так же следует выделить потоки частиц:

1. бета-частиц (электронов и позитронов).

2. альфа-частиц (ядер атома гелия-4).

(6 слайд) У излучений есть источники, которые делят на природные (спонтанный распад нуклидов, термоядерные реакции…) и искусственные (иск. радионуклиды, ядерные реакторы…).

Для того, чтобы сделать вывод о том полезна ли радиация, необходимо рассмотреть области её применения.

(7 слайд) Польза радиации.

Люди научились применять радиацию в мирных целях, с высоким уровнем безопасности, что позволило поднять практически все отрасли на новый уровень.

Получение энергии с помощью (АЭС)

Из всех отраслей хозяйственной деятельности человека энергетика оказывает самое большое влияние на нашу жизнь. Тепло и свет в домах, транспортные потоки и работа промышленности – все это требует затрат энергии. Эта отрасль является одной из самых быстроразвивающихся. За 30 лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт.

Мало у кого вызывает сомнения то, что атомная энергетика заняла прочное место в энергетическом балансе человечества.

(8 слайд) Рассмотрим применение радиации в дефектоскопии.

Рентгеновская и гамма-дефектоскопия — Одно из наиболее распространенных применений излучения в промышленности, позволяющее контролировать качество материалов. Рентгеновский метод является неразрушающим, так что проверяемый материал может затем использоваться по назначению. И рентгеновская, и гамма-дефектоскопия основаны на проникающей способности рентгеновского излучения и особенностях его поглощения в материалах..

(9слайд) Гамма-излучение применяется для химических превращений, например в процессах полимеризации.

(10 слайд) Пожалуй одной из самых главных развивающихся отраслей является ядерная медицина.

Ядерная медицина — раздел медицины, связанный с использованием достижений ядерной физики, в частности, ЯМР, радиоизотопов, и т. д.

На сегодняшний день ядерная медицина позволяет исследовать практически все системы органов человека и находит применение в неврологии, кардиологии, онкологии, эндокринологии, пульмонологии и других разделах медицины.

(11 слайд) С помощью методов ядерной медицины изучают кровоснабжение органов, метаболизм желчи, функцию почек, мочевого пузыря, щитовидной железы.

В ядерной медицине возможно не только получение статических изображений, но и наложение изображений, полученных в разные моменты времени, для изучения динамики. Такая техника применяется, например, при оценке работы сердца.

В России уже активно применяются два типа диагностики с использованием радиоизотопов – сцинтиграфия и позитронно эмиссионная томография. Они позволяют создать полные модели работы органов.

(12 слайд) Полезное воздействие.

Медики считают, что при малых дозах радиация оказывает стимулирующее воздействие, тренируя систему биологической защиты человека.(Явление гормезиса) На многих курортах используются радоновые ванны, где уровень радиации немного выше чем в природных условиях. Было замечено, что у принимающих эти ванны улучшается работоспособность, успокаивается нервная система, быстрее заживают травмы.

Исследования иностранных учёных говорят о том, что частота и смертность от всех видов рака ниже в областях с более высоким естественным радиационным фоном. (к таковым можно отнести большинство солнечных стран)

Также радиация применяется и в других отраслях ( астрономия, стерилизация пищевых продуктов…)

(13 слайд)Вред радиации.

Воздействие радиации на человека.

Воздействие радиации на организм различно, но довольно часто оно негативно. В больших дозах часто приводит к гибели организма вследствие разрушения клеток тканей. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: для альфа-излучения даже лист бумаги является преградой; бета — излучение способно проходить в ткани организма на глубину один-два сантиметра. Гамма-излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

Также различается чувствительность отдельных органов к радиоактивному излучению. Наиболее подверженными воздействию радиации яичники и семенники, молочные железы, щитовидная железа, лёгкие.

Читайте также:  Шкурка лимона полезные свойства

Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз.

А Вероятность заболевания раком возрастает прямо пропорционально дозе облучения. Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяются лейкозы.

Воздействие радиологического излучения резко усиливается другими неблагоприятными экологическими факторами (явление синергизма). Так, смертность от радиации у курильщиков заметно выше.

Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Но Изучение генетических последствий облучения очень затруднено. Неизвестно, каковы генетические повреждения при облучении, проявляться они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами.

(14 слайд) Техногенные катастрофы связанные с радиацией.

Техногенные катастрофы очень опасны. В результате поломки или происшествия, на АЭС может случиться сильный неконтролируемый выброс, который будет сопровождаться загрязнением огромных территорий, смертями животных, людей, уничтожением растений. Примерами служат аварии: «Кыштымская авария», авария на ЧАЭС, на АЭС Три – Майл – Айленд и авария на Фукусиме – 1.

(15 слайд) Так же существует проблема захоронения ядерных отходов.

В современных условиях, в связи с всевозрастающими темпами роста ядерной энергетики перед человечеством особенно остро встала проблема захоронения ядерных отходов . Каждый год в мире образуется около тонны радиоактивных отходов . Радиоактивные отходы представляют собой смесь различных радиоизотопов , которые имеют различный период полураспада , начиная от нескольких лет и кончая тысячелетиями ( так называемые трансурановые элементы , представляющ ие главную угрозу при хранении их на Земле ).

(16 слайд) Использование ядерного оружия представляет собой очень опасную угрозу для человечества

бомбы такого рода смертоносны для всего, что попадёт в зону поражения. А вызванное взрывом радиоактивное заражение может надолго сделать землю абсолютно непригодной для существования.

Следует рассказать про меры безопасности и нормы излучения. (17 слайд)

• менее 2 мЗв/год (0,23 мкЗв/ч (23 мкР/ч) – облучение не превышает средних значений доз населения страны от природных источников излучения;

Основными способами защиты от ионизирующих излучений являются:

Введение инъекций, блокирующих воздействие радиоактивных элементов.

от альфа-излучения — резиновые перчатки, респиратор;

от бета-излучения — плексиглас, тонкий слой алюминия, стекло, противогаз; от гамма-излучения — тяжёлые металлы (вольфрам, свинец, сталь, чугун и пр.); от нейтронов — вода, полиэтилен, другие полимеры;

Для обнаружения радиации используют специальные приборы – дозиметры, предназначенные для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени. Само измерение называется дозиметрией.

Прочитав про воздействие радиации на организм человека, мне захотелось узнать про состояние радиоактивного фона моего города.

Замеры радиоактивного фона города Димитровграда (18 слайд)

Я провёл замеры радиоактивного фона своего города с помощью дозиметра.

РАДЭКС РД1503 – современный, надёжный, недорогой прибор для обнаружения радиационной опасности, предназначенный для потребителей, имеющих знания о дозиметрии на бытовом уровне и желающих (или вынужденных) пользоваться дозиметрами. РАДЭКС РД1503 предназначен для обнаружения и оценки уровня радиации на местности и в помещениях, а также для оценки радиоактивного загрязнения материалов и продуктов.

0.14мкЗв/ч 0.12мкЗв/ч 0.18мкЗв/ч 0.12мкЗв/ч 0.14мкЗв/ч 0.15мкЗв/ч

Как видно по моим замерам, состояние радиоактивного фона в норме.

Также я проверил радиационный фон в школе – он не превышает значения в 0.15мкЗв/ч.

Однако в квартирах значение может быть более высоким 0.08-0.24мкЗв/ч. Это обусловлено тем, что в каждом доме есть радиоактивный газ – радон, который появляется в результате распада естественных нуклидов в земле. Проникает в квартиру с водой и с газом, а также из подвальных помещений (если такие имеются), способен накапливаться в малопроветриваемых помещениях, поэтому рекомендуют чаще проветривать квартиру.

(19 слайд)В результате анализа выявлено, что радиация не является каким либо новым фактором воздействия на живые организ мы, подобно многим химическим веществам, созданным человеком и ранее не существовавшим в природе . Другими словами , мы живём в условиях радиации , организм к ней адаптировался , а по убеждению ряда учёных , именно радиация является источником генных мутаций , л ежащих в основе развития всего живого .

Ионизирующие излучение можно эффективно и безопасно применять в медицине, радиохимии, металлургической промышленности, деревообрабатывающей промышленности и тд.

В сознании большинства людей радиация связана именно с проблемами, но они конечно есть: это воздействие радиации на людей (при дозах превышающих норму); возможные техногенные аварии, несущие сильное загрязнение биосферы; радиоактивные отходы, атомные бомбы. Но стоит помнить, что постоянно разрабатываются средства улучшения безопасности всех предприятий, использующих радиоактивные вещества и элементы. Современные средства контроля предприятий практически исключают возможность каких-то аварий.

От радиации сейчас больше пользы, чем вреда, ведь благодаря этому явлению было и будет совершено множество научных открытий.

Уравновешенный взгляд на радиацию должен включать понимание существенной пользы от применения атома как в медицине, так во всех сферах человеческой деятельности.

Радиация — каков вред облучения на организм?

Атомная радиация (ионизирующее излучение) характеризуется потоками частиц (альфа-частицы, электроны, нейтроны, протоны, тяжелые ионы) и электромагнитными лучами (рентгеновское и гамма излучения), которые образуются во время ядерных реакций и при радиоактивном распаде.

Как взаимодействует радиация с материей?

Материя и радиация

Эти лучи и частицы во время прохождения через материю (разные атомы и молекулы) продуцируют местную возбуждению и даже ионизацию. Как понять этот факт? Возбуждение атома — это такое атомное состояние, при котором электроны отдаляются от ядра, становясь более «независимые». Переходя в возбужденное состояние, уменьшается сила притяжения (электростатическая сила) между электронами и ядром. Атомная модель очень похожа на планетарную модель, а чтоб вам лучше понять структуру атома, вообразите себе Солнечную Систему. Возбуждённое состояние атома можно вообразить как движение Земли к позиции Плутона.

Радиация vs. Живые организмы

Говоря о живом мире, о биологической материи, возбуждение атомов и молекул может вызвать большие проблемы, нарушая важные биохимические процессы. Если энергия радиации, которая проходит через живые клетки такая большая что вызывает ионизацию атомов, то, скорее всего клетки умирают. Ионизация отличается от простого возбуждения электронов тем, что они отрываются совсем от атомного ядра и мигрируют свободно по всему веществу. В свою очередь электроны, которые образуются во время ионизации, в зависимости от приобретённой энергии могут вызвать другие ионизации и возбуждения.

Всякая модификация в облучаемом объекте по причине ионизирующего излучения, называется радиационно-индуцированным эффектом. Не все радиационно-индуцированные эффекты вредны для здоровья, есть и положительные свойства излучений. Негативные воздействия радиации замечаются, при лучевом поражении организма, из-за больших доз ионизирующего излучения. Всё-таки радиация не имеет аналогов в идентификации и лечения некоторых болезней.

Для того чтобы защититься от негативного эффекта радиации, и в то же время использовать её для добрых целей, надо очень хорошо знать радиационно-индуцированные эффекты. Они и сегодня не до конца изучены. Во многих странах, исследования в этой области продолжаются, захватывая специалистов разных сфер деятельности как: радиобиологов, физиков, биохимиков, генетиков. Трудности познания этих процессов заключаются в том что процесс взаимодействия радиации с живыми клетками имеет несколько этапов сложности.

Чтобы лучше понять какие процессы происходят во время излучения живых клеток, нужно внимательнее изучить, что случается во время взаимодействия радиации с «простым» веществом (минералы, камни, растворы). Это — очень трудная задача, которой занимались даже и Э. Резерфорд, Э. Ферми, Н. Бор, Г. Бете (Нобелевские лауреаты). Хотя им не удалось понять полностью механизмы взаимодействия радиационных излучений с веществом, они были первыми пионерами этой сферы.

Структура живой материи так сложна, что с трудом удаётся анализировать и моделировать воздействие радиации на живые ткани. Задача не из простых при опытах на живое вещество, потому что оно более сложна в сравнении с неживым веществом.

Интересно, что излучения воздействуя на ту же живую систему, могут спровоцировать разные эффекты, таким образом, при множестве квантов излучения, образуется сумма разных эффектов. Радиация может разрушить структуру нуклеиновых кислот (РНК и ДНК), дегенерировать структуру хромосом, нарушить нормальные процессы деления клеток, и остановить полностью жизнедеятельность клеток. Что интересно, эти негативные процессы проявляются вместе или по отдельности на клеточном уровне. Ожидать какие-то определённые изменения в определённом месте очень трудная задача. Ионизирующее излучение при прохождении через живой материал может быть источником одних процессов, а может других. Замечаются разрушения структуры белков при запускании первичных физических процессов как ионизация и возбуждение атомов.

Очень интересен тот факт что эффект разных радиаций не один и тот же, даже при одинаковой дозе. Конечно, первые физические процессы, которые происходят в живом материале на уровне атомов почти тот же, но в зависимости от энергии частиц и квантов, наблюдаемый разный. При одинаковой дозе, нейтроны в 10 раз вреднее для организма, чем гамма-лучи. Чтоб можно было сопоставлять разные виды излучения (электроны, нейтроны, рентгеновские и гамма-лучи), учёные додумались ввести величину, которая называется относительная биологическая эффективности излучения (ОБЭ). С помощью этой величиной можно сравнить эффект излучения в сравнении с образцом. Таким образом, можно узнать, сколько энергии определённой радиации нужно, чтоб был одинаковый радиационно-индуцированный эффект. Как образец используется рентгеновское излучение определенной энергии.

Почему различные виды радиации причиняют вред неодинаковой величины живым организмам?

Объяснение этого явления в физике прохождения радиации через вещество. Есть очень большие различия в процессах взаимодействия между веществом и элементарными частицами или электромагнитными квантами. Можно даже сказать что электромагнитные лучи «менее вредны» чем другие виды радиации, потому что они провоцируют только возбуждения атомов или в худшем случае — ионизацию, но при этом не меняя состав самого ядра. Облучение «другими видами радиации», например нейтронами, ведёт к более сложным последствиям, как например изменения ядерного состава, причиняя возможные ядерные реакции в самом живом организме! Нейтроны могут выбивать протоны из ядер атомов даже сложных структур биологических макромолекул. Как последствие этого, выбитые частицы, таким образом, провоцируют дополнительную ионизацию живой ткани. В излученном сегменте живой ткани начинают происходить так много биохимических реакции, что в финале ведёт к радиационно-индуцированному эффекту. Как вы уже поняли тут без понятий физики и биологии не разобраться. Наука которое изучает эти процессы в живом организме называется микродозиметрия.

Вред или польза радиации?

При повышенных дозах излучении, люди не выдерживают и заболевают, страдают и умирают. Учёных волнует и другой аспект этой проблематики: какой будет эффект при нулевых дозах радиации на организм? Польза или вред? Говорят что при экспериментах на подопытных животных, у этих понижался иммунитет, и вскоре умирали.

На нашей планете радиоактивность это нормальное явление и мы без этого жить не можем. Да, большие дозы влияют пагубно на наше здоровье, ну а слабые? Что может быть с нашим здоровьем от таких излучений?

Малые дозы радиации — что может случиться?

А случится, может многое… В первых, это радиация переходит к вам как «бонус» к фоновой радиации, а во вторых под воздействием излучения накапливаются в крови и во внутренних органах тяжелые металлы как марганец, кадмий, свинец, ртуть. Из-за облучения даже при малых дозах, человек стареет быстрее.

Проводились эксперименты по установлению продолжительности жизни во время проникновения в организм низких доз солей тяжелых металлов и радиации и было обнаружено что в зависимости от типа солей и эффект радиации изменялся. Например, соли железа, цинка и ртути при излучении гамма-лучами, уменьшали вредный эффект даже при увеличении облучения! Но этот феномен замечается только в определённом диапазоне.

Читайте также:  Яблоко полезные свойства витамины

В чем тайна этого явления?

Начало эксперимента обычное: увеличивая дозу облучения, растёт и радиационно-индуцированный эффект. Но очень интересен тот факт что потом, когда доза возрастает до определённой величины, организм начинает защищаться. В место того чтобы продолжительность жизни таким образом уменьшалось, она возрастает и может дойти до тех параметрах как при малых доз излучения.

Этот механизм защиты не новость ни для кого и происходит в живой природе почти везде. Для того чтоб организм не пострадал существенно от действия радиоактивности, необходимо «включить» защиту организма. А включают её даже малые дозы.

Также исследования показали что при наличии солей цинка, железа и ртути, эффект облучения возрастал. Тяжёлые металлы помогают активировать защиту организма, а так они действуют отрицательно на организм. Так что если вы собираетесь пройти рентгеновскую обследование, ни в коем случае не пейте перед этим воду с высоким содержанием ионов железа…

Как же нам защитится от действия тяжелых металлов и что надо делать, чтоб они не попали нам в пищу? Есть стандартные методы защиты от них: употреблять продукты с очень низким содержанием тяжелых металлов, а если они попадают в организм, тогда можно принимать продукты которые связывают их. Связочным действием обладают молоко и кисель. Недаром молоко дают за вредность! Эти средства очень хорошо связывают такие элементы как свинец и ртуть, но они могут связывать также такие полезные элементы как кальций и магний.

Для того чтоб в организм проникало меньше тяжелых металлов, надо употреблять полезные ионы-конкуренты. В Санкт-Петербурге, например, вода отличается «мягкостью», а это означает что в ней мало кальция. Для того чтоб вывести тяжелые металлы из организма надо вводить необходимое количество ионов кальция. Вот незадача! Как это сделать, если нормальная вода содержит мало кальция? Надо пить минеральную воду, где много кальция и магния. Они уменьшают содержание ионов свинца, ртути и других металлов в почках, так что улучшается и кроветворение.

Ионизация, которая получается в результате излучения, взаимодействуя с живыми тканями, генерирует свободные радикалы. Эти радикалы опасны тем, что разрушают важные макромолекулы как белки и нуклеиновые кислоты. Так что не избежать массовую гибель клеток и возрастает риск возникновения раковых опухолей и могут произойти мутации. Особенно опасны излучения для активно делящиеся клеток (стволовые, эпителиальные и эмбриональные).

В зависимости от дозы излучения и наблюдаемые радиобиологические эффекты другие. Интересно что лучевая болезнь возникает при дозе радиации 1-2 Зв (зиверт — единица эквивалентной дозы). Если увеличить дозу излучения то негативные последствия будут проявлятся чаще. Иногда проявления облучения могут проявлятся за долго после облучения (рак), и даже после многих поколений (мутации).

Читайте также:

Алкоголь (которого мы знает также под названием этилового спирта) — является органическим веществом, получаемый во…

В последние годы люди, желая защитить себя от различных заболеваний, начинают принимать в больших количествах…

Всё что связано с лишним весом, вызывает большие затраты, независимо если вы набирайте лишние килограммы…

Как известно, кофеин действует отрицательно на нервную систему. Впоследствии перевозбуждения и истощения нервных клеток, замечаются…

Минеральные вещества, макроэлементы и микроэлементы, в количестве 80 элементов, являются незаменимыми для роста, развития, поддерживания…

Какую пользу может мне принести солнечный свет? Прямые солнечные лучи полезны тем, что уничтожают микробов.…

Чем полезна радиация? )

Согласно его данным, низкие дозы радиации снижают частоту инфекционных заболеваний, уменьшает число случаев рака у молодых людей и существенно увеличивает среднюю продолжительность жизни. Радиация также, по его словам, увеличивает активность иммунной системы, что снижает количество инфекционных заболеваний и способствует заживлению ран.

Лаки отмечает, что человек в процессе эволюции приспособился к определенному уровню радиации, как и к другим особенностям окружающей среды, и ее нехватка может негативно влиять на здоровье, так же, как дефицит некоторых веществ, например, витаминов и микроэлементов.

Сегодня ионизирующее облучение используется для лечения определенных форм рака, однако использование источников радиации для лечения других заболеваний не признается официальной медициной. Лаки надеется изменить эту точку зрения. Он предлагает использовать для медицинских целей небольшие образцы специально подготовленных радиоактивных отходов с атомных реакторов.

Полезные свойства радиации

В настоящее время радиация находит полезное применение не только для получения электрической и тепловой энергии. Полезные свойства радиации нашли применение в различных областях естествознания, технике, медицине:

Ø в промышленности:

o гамма-дефектоскопия – контроль целостности различных сварных металлических оболочек (корпусов реакторов, подводных и надводных кораблей, трубопроводов и т. п.), нейтронный каротаж;

o разведка нефти и воды;

Ø в сельском хозяйстве:

o предпосевная обработка семян, повышающая урожайность;

o обеззараживание стоков животноводческих ферм;

Ø в космонавтике:

o создание атомных источников энергии спутников, орбитальных комплексов;

Ø в криминалистике:

o нанесение специальных меток на предметы хищения, облегчающие их поиск, идентификацию и изобличение преступников;

o определение возраста геологических пород – урал-свинцовым методом оценен возраст Земли (около 4,5 млрд. лет);

o радиоуглеродный метод позволяет установить возраст предметов, имеющих биологическую природу, с точностью 50 лет в диапазоне 1000 – 50000 лет: например, на основе измерения содержания углерода в веревочных сандалиях, найденных в пещере в штате Орегон, был подтвержден факт существования 9000 лет назад доисторических людей на территории США;

o диагностика заболеваний;

o лечение онкологических больных;

o стерилизация медицинских инструментов и материалов.

Заключение

Делая этот реферат, я открыл для себя много нового. Я выбирал нужную информацию из многих источников. В ходе отбора информации я находил много интересного. Эта работа объединяет в себе труды многих людей. В ней коротко изложен почти весь материал о главных аспектах радиоактивности, начиная от того, что такое радиоактивность и заканчивая методами защиты от неё.

Защитите себя и свою семью от радиации!

Список используемой литературы.

1.Бобок С.А., Юртушкин В.И. Чрезвычайные ситуации: защита населения и

территорий. – М.: «Издательство ГНОМ и Д», 2000.

2.Петров Н.Н. «Человек в чрезвычайных ситуациях». Учебное пособие — Челябинск: Южно-Уральское книжное изд-во, 1995

3. Книга «Атомная мифология» — Алексея Яблокова

4. «Ядерная энергия: вопросы и ответы» — Гринпис Инт.

5 Ресурсы Интернет

6.Э. Резерфорд “Радиоктивность”

7.И. Белоусова, Ю. Штуккенберг “Естественная радиоктивность”

8.Энциклопедия по физике “Радиоктивные излучения”

5 ситуаций, когда радиация полезна

Мир помнит ужасные последствия применения ядерного оружия и катастроф на атомных электростанциях. Из-за радиофобии после аварии на Чернобыльской АЭС пришлось даже изменить название одного из методов диагностики: ядерная магнитно-резонансная томография лишилась первого слова и превратилась в магнитно-резонансную томографию.

Тем не менее техногенная радиация, которую используют в медицине, — вовсе не монстр. Рентген, без которого сегодня трудно представить диагностику переломов и многого другого, — лишь вершина айсберга. Рассказываем о других радиоактивных технологиях на службе у здоровья.

Радиоактивный сахар

Рентгенография, компьютерная томография, магнитно-резонансная томография, УЗИ — эти исследования помогают изучить структуру органов и тканей, но не способны отобразить происходящие в них метаболические процессы. В этом помогает гамма-излучение. Его используют при проведении позитронно-эмиссионной томографии, сокращенно — ПЭТ.

В организм вводят безопасное радиоактивное вещество, которое накапливается в определенных клетках и которое можно зарегистрировать с помощью специального аппарата. Врач получает снимки и даже трехмерные изображения со «светящимися» пятнами, которые соответствуют местам накопления радиофармпрепарата. В качестве последнего чаще всего используют разные сахара – впоследствии организм от них легко избавляется. ПЭТ можно сочетать с компьютерной томографией — это помогает получать еще более информативные изображения.

Дозы радиации во время позитронно-эмиссионной томографии настолько низкие, что не могут причинить вреда. Исследование опасно только во время беременности. Беременным женщинам противопоказана и рентгенография, и компьютерная томография, и даже МРТ делают в крайних случаях, с большой осторожностью.

ПЭТ широко применяют в онкологии: если ввести радиофармпрепарат и просканировать все тело, можно обнаружить метастазы, которые не удается выявить другими методами. Также метод используют в неврологии, кардиологии, при некоторых инфекциях.

Лимфатический дозор

Когда хирург удаляет злокачественную опухоль, перед ним стоит сложная задача: нужно принять правильное решение относительно объема операции. Если удалить слишком мало ткани, в организме останутся раковые клетки, это грозит рецидивом. Удалять слишком много тканей тоже нежелательно.

Не всегда понятно, как быть с близлежащими – их называют регионарными — лимфатическими узлами. А вдруг в них тоже уже распространились раковые клетки? Раньше врачи удаляли их «на всякий случай». Из-за этого у многих пациентов после операции развивалось осложнение – лимфедема. Из-за удаленных лимфоузлов нарушается отток лимфы, жидкость застаивается в тканях, развивается отек. Например, после удаления лимфатических узлов при раке молочной железы бывает лимфедема руки.

Сегодня у хирургов появился надежный инструмент, который помогает оценить состояние регионарных лимфоузлов и избежать их ненужного удаления. И здесь на помощь снова приходит радиация. Процедура называется сентинель-биопсией или биопсией сторожевого лимфатического узла. По сути это аналог позитронно-эмиссионной томографии. Во время операции в опухоль вводят безопасный радиоактивный препарат. Он проникает в лимфатические сосуды и по ним начинает распространяться. В первую очередь он попадает в так называемые сторожевые, или сигнальные, лимфоузлы, которые находятся ближе всего к опухоли и первыми принимают от нее лимфу. Сигнальные лимфоузлы обнаруживают с помощью специального устройства – гамма-камеры. Радиофармпрепарат заставляет их «светиться». Эти лимфоузлы удаляют и исследуют под микроскопом. Если они «чистые», значит, опухолевые клетки не успели распространиться с током лимфы, и регионарные лимфоузлы можно не удалять.

Справедливости ради стоит отметить, что сентинель-биопсию можно проводить не только с помощью радиофармпрепаратов и гамма-камеры. Сегодня есть более безопасные методы, например, флуоресцентные красители.

Ядерное оружие против неправильных клеток

Ионизирующее излучение опасно для человека и других живых организмов в первую очередь за счет того, что оно повреждает ДНК – хранилище генетической информации. Это происходит двумя путями:

  • Поток частиц может непосредственно повреждать ДНК путем ионизации.
  • Вода, которая находится в клетках, поглощает радиацию, в ней образуются свободные радикалы, они повреждают генетический материал.

Повреждение ДНК приводит к апоптозу — запрограммированной клеточной смерти, вредным мутациям, которые могут передаваться потомкам, злокачественному перерождению клеток. К радиации наиболее чувствительны ткани, в которых происходит активное размножение клеток: кожа и слизистые оболочки, красный костный мозг, тестикулы и женские яичники.

Очень быстро размножаются опухолевые клетки – а значит, ионизирующее излучение можно поставить на службу медицине для борьбы с раком. Эта идея возникла почти сто лет назад, она привела к возникновению лучевой терапии. Для облучения опухолей используют разные виды ионизирующих излучений: рентгеновское (доза при этом многократно выше, чем при обычной рентгенографии), альфа-, бета- и гамма-излучение, поток нейтронов, протонов.

Главная проблема лучевой терапии в том, что облучать нужно только опухолевую, но не здоровые ткани. В противном случае возникают серьезные осложнения. Решения есть. Например, при 3D-конформной лучевой терапии выполняют объемное планирование, процедуру проводят специальным аппаратом. Пациент должен быть неподвижен, чтобы облучаемый объем в точности соответствовал положению опухоли. Это помогает существенно снизить лучевую нагрузку на здоровые ткани.

Читайте также:  Фитолизин полезные свойства

При некоторых типах рака применяют брахитерапию — источник излучения помещают прямо в организм пациента, рядом с опухолью. Например, при раке простаты в предстательную железу можно поместить небольшую капсулу размером с рисовое зернышко. Она в течение нескольких месяцев выделяет ионизирующее излучение, которое задерживается в опухоли и не распространяется в окружающую здоровую ткань.

Нож без ножа

Радиация способна «вырезать» некоторые патологические образования не хуже скальпеля. При этом не нужно делать разрез: гамма-лучи отлично проникают через кожу. Высокая точность вмешательства, отсутствие выраженной травмы тканей и кровопотери, быстрое восстановление (заниматься привычными делами можно уже спустя несколько часов после операции) — все это преимущества стереотаксической радиохирургии. Правда, пока она нашла применение только в неврологии.

Операции без скальпеля проводят с помощью специального аппарата – гамма-ножа, разработанного в 1968 году. Он генерирует 201 луч, который сходится в одной точке — там, где находится опухоль или другое патологическое образование. Каждый луч по отдельности очень слаб и не может навредить тканям, через которые проходит. Но в «эпицентре» доза разрушительна. С помощью гамма-ножа можно лечить метастазы разных опухолей в головном мозге, артериовенозные мальформации, невралгию тройничного нерва, менингиомы, акустические невриномы, глиомы, опухоли гипофиза. На данный момент процедуру прошло более 850 000 пациентов.

В России есть три установки гамма-нож: в Москве, Санкт-Петербурге и в Ханты-Мансийске. Аналог гамма-ножа – кибернож. Он работает по схожему принципу, но использует рентгеновские лучи. Кибернож появился позднее – в 1992 году. На данный момент в мире 250 таких аппаратов, лечение прошло более 100 000 пациентов.

Убийца микробов

Ионизирующее излучение отлично убивает болезнетворные микроорганизмы, вирусы, насекомых-вредителей. С помощью радиации можно стерилизовать разные предметы и даже продукты.

Например, гамма-излучением можно быстро обрабатывать огромные партии шприцев, катетеров, наборов для переливания крови и других медицинских изделий прямо в упаковке. При этом для микроорганизмов наступает самый настоящий конец света – в живых остается лишь одна бактерия на миллион изделий.

Сегодня в Европе и США радиацией обрабатывают более 68 видов пищевых продуктов: полуфабрикаты, мясо, рыбу, морепродукты, картофель, концентраты фруктовых соков, ягоды и фрукты, корма для сельскохозяйственных животных. В западных странах процесс поставлен на промышленный поток.

Исследования показывают, что ионизирующее излучение не делает продукты «зараженными» радиацией и опасными для людей. И все же для облученных продуктов существует специальная международная маркировка – в магазине их можно легко отличить по яркому зеленому значку. Из ионизирующих излучений для дезинфекции используют гамма- и рентгеновские лучи. А для обработки поверхностей применяют неионизирующее излучение – ультрафиолетовое. Лампы для «кварцевания» можно встретить в любой больнице.

Читайте также, как защититься от радиации в экстренных ситуациях.

Радиация: виды, источники, влияние радиации на человека

Радиация представляет собой ионизирующее излучение, наносящее непоправимый вред всему окружающему. Страдают люди, животные, растения. Самая большая опасность заключается в том, что она не видима человеческим глазом, поэтому важно знать об ее главных свойствах и воздействии, чтобы защититься.

Радиация сопровождает людей всю жизнь. Она встречается в окружающей среде, а также внутри каждого из нас. Огромнейшее воздействие несут внешние источники. Многие наслышаны об аварии на Чернобыльской АЭС, последствия которой до сих пор встречаются в нашей жизни. Люди оказались не готовы к такой встрече. Это лишний раз подтверждает, что в мире есть события неподвластные человечеству.

Виды радиации

Не все химические вещества устойчивы. В природе существуют определенные элементы, ядра которых трансформируются, распадаясь на отдельные частички с выделением огромного количества энергии. Это свойство называется радиоактивностью. Ученые в результате исследований обнаружили несколько разновидностей излучения:

  1. Альфа излучение — это поток тяжелых радиоактивных частиц в виде ядер гелия, способных нанести наибольший вред окружающим. К счастью, им свойственна низкая проникающая способность. В воздушном пространстве они распространяются всего на пару сантиметров. В ткани их пробег составляет доли миллиметра. Таким образом, внешнее излучение не несет опасности. Можно защититься, используя плотную одежду или лист бумаги. А вот внутреннее облучение – внушительная угроза.
  2. Бета излучение – поток легких частичек, перемещающихся в воздухе на пару метров. Это электроны и позитроны, проникающие в ткань на два сантиметра. Оно несет вред при соприкосновении с кожей человека. Однако большую опасность дает при воздействии изнутри, но меньшую, чем альфа. Для предохранения от влияния этих частиц, используются специальные контейнеры, защитные экраны, определенное расстояние.
  3. Гамма и рентгеновское излучение – это электромагнитные излучения, пронизывающие тело насквозь. Защитные средства от такого воздействия включает создание экранов из свинца, возведение бетонных конструкций. Наиболее опасное из облучений при внешнем поражении, так как оказывает влияние весь на организм.
  4. Нейтронное излучение состоит из потока нейтронов, обладающих более высоким показателем проникающей способности, чем гамма. Образуется в результате ядерных реакций, протекающих в реакторах и специальных исследовательских установках. Появляется во время ядерных взрывов и находится в отходах утилизированного топлива от ядерных реакторов. Броня от такого воздействия создается из свинца, железа, бетона.

Источники радиации

Всю радиоактивность на Земле можно поделить на два основных вида: естественную и искусственную. К первой относятся излучения из космоса, почвы, газов. Искусственная же появилась благодаря человеку при использовании атомных электростанций, различного оборудования в медицине, ядерных предприятий.

Источники радиации

Естественные источники

Радиоактивность естественного происхождения всегда находилась на планете. Излучение присутствует во всем, что окружает человечество: животные, растения, почва, воздух, вода. Считается, что этот небольшой уровень радиации, не оказывает вредного воздействия. Хотя, некоторые ученые придерживаются иного мнения. Так как люди не имеют возможности повлиять на эту опасность, следует избегать обстоятельств, увеличивающих допустимые значения.

Разновидности источников естественного происхождения

  1. Космическое излучение и солнечная радиация — мощнейшие источники, способными ликвидировать все живое на Земле. К счастью, планета защищена от этого воздействия атмосферой. Однако люди постарались исправить это положение, развивая деятельность, приводящую к образованию озоновых дыр. Не стоит надолго попадать под прямые солнечные лучи.
  2. Излучение земной коры опасно вблизи месторождений различных минералов. Сжигая уголь или используя фосфорные удобрения, радионуклиды активно просачиваются внутрь человека с вдыхаемым воздухом и употребляемой им едой.
  3. Радон – это радиоактивный химический элемент, присутствующий в строительных материалах. Представляет собой бесцветный газ без запаха и вкуса. Этот элемент активно накапливается в почвах и выходит наружу вместе с добычей полезных ископаемых. В квартиры он попадает вместе с бытовым газом, а также с водопроводной водой. К счастью, его концентрацию легко уменьшить, постоянно проветривая помещения.

Искусственные источники

Данный вид появился благодаря людям. Его действие увеличивается и распространяется с их помощью. Во время начала ядерной войны не так страшна сила и мощность оружия, как последствия радиоактивного излучения после взрывов. Даже если вас не зацепит взрывная волна или физические факторы — вас добьет радиация.

Взрыв атомной бомбы

К искусственным источникам относятся:

  • Ядерное оружие;
  • АЭС;
  • Медицинское оборудование;
  • Отходы с предприятий;
  • Определенные драгоценные камни;
  • Некоторые старинные предметы, вывезенные из опасных зон. В том числе из Чернобыля.

Норма радиоактивного излучения

Ученым удалось установить, что радиация по-разному оказывает влияние на отдельные органы и весь организм в целом. Для того чтобы оценить ущерб, возникающий при хроническом облучении ввели понятие эквивалентной дозы. Она рассчитывается по формуле и равна произведению полученной дозы, поглощенной организмом и усредненной по конкретному органу или всему организму человека, на весовой множитель.

Единицей измерения эквивалентной дозы есть соотношение Джоуля к килограммам, которое получило название – зиверт (Зв). С её использованием была создана шкала, позволяющая понять о конкретной опасности излучения для человечества:

  • 100 Зв. Моментальная смерть. У пострадавшего есть несколько часов, максимум пару дней.
  • От 10 до 50 Зв. Получивший повреждения такого характера погибнет через несколько недель от сильного внутреннего кровотечения.
  • 4-5 Зв. При попадании данного количества, организм справляется в 50% случаев. В остальном печальные последствия приводят к смерти спустя пару месяцев из-за повреждений костного мозга и нарушения кровообращения.
  • 1 Зв. При поглощении такой дозы лучевая болезнь неизбежна.
  • 0,75 Зв. Изменения в системе кровообращения на небольшой промежуток времени.
  • 0,5 Зв. Данного количества достаточно, чтобы у больного развились онкологические заболевания. Остальные симптомы отсутствуют.
  • 0,3 Зв. Такое значение присуще аппарату для проведения рентгена желудка.
  • 0,2 Зв. Допустимый уровень для работы с радиоактивными материалами.
  • 0,1 Зв. При таком количестве происходит добыча урана.
  • 0,05 Зв. Данное значение – норма облучения медицинских аппаратов.
  • 0,0005 Зв. Допустимое количество уровня радиации около АЭС. Также это значение годового облучения населения, которое приравнивается к норме.

К безопасной дозе радиации для человека относится значения до 0,0003-0,0005 Зв в час. Предельно допустимым считается облучение в 0,01 Зв в час, если такое воздействие непродолжительно.

Влияние радиации на человека

Радиоактивность оказывает огромное влияние на население. Вредному воздействию подвергаются не только люди, столкнувшиеся лицом к лицу с опасностью, но и последующее поколение. Такие обстоятельства вызваны действием радиации на генетическом уровне. Различают два вида влияния:

  • Соматический. Заболевания возникают у пострадавшего, получившего дозу радиации. Приводит к появлению лучевой болезни, лейкозу, опухоли разнообразных органов, локальные лучевые поражения.
  • Генетический. Связан с дефектом генетического аппарата. Проявляется в последующих поколениях. Страдают дети, внуки и более далекие потомки. Возникают генные мутации и хромосомные изменения

Помимо отрицательного воздействия, есть и благоприятный момент. Благодаря изучению радиации, ученым удалось создать на ее основе медицинское обследование, позволяющее спасать жизни.

Мутация после радиации

Последствия облучения

При получении хронического облучения в организме происходят восстановительные мероприятия. Это приводит к тому, что пострадавший приобретает меньшую нагрузку, чем получил бы при разовом проникновении одинакового количества радиации. Радионуклиды размещаются внутри человека неравномерно. Чаще всего страдают: дыхательная система, пищеварительные органы, печень, щитовидка.

Враг не дремлет даже спустя 4-10 лет после облучения. Внутри человека может развиться рак крови. Особую опасность он представляет у подростков, не достигших 15 лет. Замечено, что смертность людей, работающих с оборудованием для проведения рентгена, увеличена из-за лейкоза.

Самым частым результатом облучения проявляется лучевая болезнь, возникающая как при однократном получении дозы, так и при длительном. При большом количестве радионуклидов приводит к смерти. Распространен рак молочной и щитовидной желез.

Страдает огромное количество органов. Нарушается зрение и психическое состояние потерпевшего. У шахтеров, участвующих в добыче урана, часто встречается рак легких. Внешние облучения вызывают страшные ожоги кожных и слизистых покровов.

После воздействия радионуклидов возможно проявление двух типов мутаций: доминантной и рецессивной. Первая возникает сразу же после облучения. Второй тип обнаруживается спустя большой промежуток времени не у пострадавшего, а у его последующего поколения. Нарушения, вызванные мутацией, приводят к отклонениям в развитии внутренних органов у плода, внешним уродствам и изменением психики.

К сожалению, мутации достаточно плохо изучены, так как обычно проявляются не сразу. Спустя время сложно понять, что именно оказало главенствующее влияние на её возникновение.

Источники:
  • http://www.ecololocate.ru/locats-493-1.html
  • http://www.metod-kopilka.ru/polza_i_vred_radiacii-4648.htm
  • http://www.net-bolezniam.ru/radiacija-kakov-vred-obluchenija-na-organizm/65/
  • http://otvet.mail.ru/question/50523106
  • http://mydocx.ru/5-5981.html
  • http://health.mail.ru/news/5_situatsiy_kogda_radiatsiya_polezna/
  • http://toxiny.ru/izluchenie/radiaciya/