Меню Рубрики

Приведите примеры полезного и вредного действия сил трения всех видов

Любое движение в природе и технике, которое предполагает наличие физического контакта между твердыми телами, сопровождается возникновением трения. В данной статье приведем примеры силы трения и покажем, в каких случаях она играет полезную роль, а в каких является нежелательной.

В данной статье рассмотрим только примеры сил трения, которые действуют между твердыми объектами, имеющими физический контакт друг с другом.

Одним из важных видов трения является трение покоя. Исходя из самого названия, можно предположить, что оно проявляется, когда одно тело на поверхности другого покоится. Каждый знает, чтобы с места сдвинуть какой-нибудь тяжелый предмет, необходимо приложить некоторую внешнюю силу, направленную вдоль поверхности контакта этого предмета и поверхности, на которой он стоит. Противодействие этой силе оказывает сила трения покоя. Действует она между поверхностями соприкосновения тел. Трение покоя возникает из-за наличия шероховатости на касающихся поверхностях, какими бы гладкими они ни являлись.

Второй вид трения, который мы рассмотрим, это трение скольжения. Возникает оно также по причине упомянутой шероховатости, когда тела начинают движение относительно друг друга с помощью скольжения. Направление и точка приложения силы трения скольжения являются точно такими же, как для трения покоя. Единственным отличием между этими силами является то, что сила скольжения всегда меньше, чем сила покоя.

Третьим видом трения, который играет не меньшую роль в технике, чем первые два, является трение качения. Как говорит его название, появляется оно, когда одно тело катится по поверхности другого. Причина трения качения заключается в гистерезисе деформации, который приводит к «распылению» кинетической энергии катящегося тела. В ряде практических случаев эта сила трения в 10-100 и более раз меньше, чем предыдущие рассмотренные виды трения.

Все виды сил трения прямо пропорциональны силе реакции опоры, с которой последняя действует на рассматриваемое тело.

Из всех названных видов трения, пожалуй, трение покоя является самым «безобидным». Дело в том, что оно на практике играет практически всегда полезную роль. Единственный его отрицательный момент заключается в том, что оно больше трения скольжения. Последний факт означает, что для любого начала движения необходимо приложить большое усилие. Например, чтобы начать движение на лыжах по снегу, сначала следует буквально «оторвать» их от снежной поверхности.

Существует масса примеров пользы силы трения покоя. Перечислим их:

  • Гвозди и шурупы, которые прочно скрепляют два твердых тела из дерева, пластика и металла, выполняют свои функции благодаря действию рассматриваемой силы.
  • Ходьба человека, езда автомобилей по дорогам осуществляется благодаря тому, что трение покоя оказывается бо́льшим, чем трение скольжения. В противном бы случае, нам тяжело было бы двигаться, люди и транспортные средства скользили бы на одном месте.
  • Любые тела, которые покоятся на наклонных поверхностях, обязаны действию трения покоя. Если бы последнего не было, то невозможно было бы поставить на ручной тормоз автомобиль на косогоре или любой бытовой предмет на стол, который имеет небольшой наклон к горизонту.

В отличие от трения покоя, которое в основном играет положительную роль в жизнедеятельности человека, трение скольжения, как правило, является вредной силой. Тем не менее, можно привести два примера полезной силы трения скольжения:

  • Поскольку трение скольжения приводит к разогреванию поверхности предметов (естественный и самый простой способ перевода механической энергии в тепловую), то этот эффект можно использовать для увеличения температуры тел. Так, в древности наши предки с помощью трения скольжения добывали огонь.
  • Когда водитель хочет остановить транспортное средство, то он нажимает на педаль тормоза. При этом тормозные диски скользят внутри обода колеса и тормозят его вращение.

Примеры действия силы трения скольжения — это движение шкафа по полу, когда мы хотим переставить его в комнате, скольжение лыжника и конькобежца, проскальзывание колес автомобиля при их блокировки или при движении по скользкой дороге, проскальзывание между трущимися деталями механизмов различных машин.

Во всех названных случаях трение скольжения играет вредную роль. Названные примеры вреда силы трения скольжения связаны с тем, что она препятствует механическому движению и «съедает» некоторую долю кинетической энергии (лыжи, коньки, движущиеся части машин). Кроме того, перевод части механической энергии в тепловую приводит к разогреву трущихся деталей. Повышение же их температуры приводит к изменению микроскопической структуры, что нарушает свойства материалов. Наконец, перечисленные примеры силы трения скольжения приводят к износу трущихся поверхностей, появлению на них нежелательных борозд, утончению.

Если рассмотреть в корне вопрос пользы силы трения качения, то окажется, что ее нет вовсе. Действительно, трение качения всегда препятствует механическому вращению, оно приводит к износу рабочих деталей и к их нежелательному нагреву. Тем не менее явление качения широко используется в технике (подшипники, колеса транспортных средств). Объясняется это тем, что сила трения качения намного меньше аналогичной силы скольжения, что на порядки снижает масштаб ее вредного влияния.

Как мы видели выше в примерах, силы трения покоя и скольжения иногда оказываются полезными, а иногда вредными. В связи с этим человечество с давних времен использует способы для изменения масштаба действия трения как в сторону увеличения соответствующей силы, так и в сторону ее уменьшения.

Яркими примерами, как увеличить силу трения, является посыпание песком и солью льда на дорогах. В результате этих действий происходит увеличение шероховатости ледяной поверхности и, как следствие, увеличение сил трения покоя и скольжения.

Еще один способ увеличения рассматриваемых сил заключается в использовании специальных поверхностей. Ярким примером является поверхность зимней покрышки автомобиля, которая характеризуется глубоким протектором и наличием металлических шипов.

Во время катания на лыжах, а также при вращении подшипников различных механизмов трение играет отрицательную роль. Для его уменьшения используют специальные смазки, как правило, на основе жиров (воск, литол).

источник

Сила трения встречается буквально на каждом шагу. Но знают ли люди, зачем она нужна? В чем вред и польза силы трения? Попробуем разобраться.

На земные объекты действует несколько сил, которые тесно взаимосвязаны между собой и влияют на жизнедеятельность тел. Прежде всего, это сила тяжести, упругости (внутреннее сопротивление тел в ответ на смещение их молекул) и реакции опоры. Но есть еще она очень важная физическая величина, называемая силой трения. Она в отличие от силы тяготения и упругости не зависит от расположения тел. При ее изучении действуют иные законы: коэффициент трения скольжения и сила реакции опоры. Например, если понадобится сдвинуть тяжеловесный шкаф, то с первой же минуты станет понятно, что сделать это непросто. Кроме того, при выполнении данной задачи присутствуют определенные помехи. Что же препятствует усилиям, приложенным к шкафу? А мешает этому не что иное, как сила трения, принцип действия которой изучают еще в школе. Курс физики за 7 класс подробно рассказывает об этом явлении.

В чем состоит вред и польза силы трения любого типа? Разумеется, приведенные примеры несколько утрированы – в жизни все немного сложнее. Однако несмотря на то, что сила трения имеет очевидные минусы, создающие ряд сложностей в жизни, ясно, что без нее проблем было бы гораздо больше. Поэтому у данной величины есть свои недостатки и преимущества.

Среди примеров вреда этой силы на одном из первых мест стоит проблема перемещения тяжеловесных грузов, быстрого изнашивания любимых вещей, а также невозможности создать вечный двигатель, поскольку из-за трения любое движение рано или поздно прекращается, требуя стороннего вмешательства.

Среди примеров полезности этой силы то, что мы можем спокойно ходить по земле, не поскальзываясь на каждом шагу, наша одежда прочно сидит и мгновенно не приходит в негодность, поскольку нити ткани удерживаются благодаря трению. Кроме того, люди используют принцип действия этой силы, посыпая скользкие дороги, из-за чего удается избежать множества аварий и травм.

Человечество научилось взаимодействовать с данной физической величиной, увеличивая и уменьшая ее в зависимости от поставленных целей. Наша непосредственная задача – попытаться использовать ее максимально эффективно.

С ней люди сталкиваются очень часто. Польза трения в том, что мы бы и шагу ступить не смогли, не будь этой физической величины. Именно она удерживает нашу обувь на той поверхности, куда мы ступаем. Каждый из нас ходил по очень скользким поверхностям, например, по льду, и не понаслышке знает, что это очень тяжело. Почему так происходит? Прежде чем рассказать о том, в чем вред и польза силы трения, определимся с тем, что это такое.

Силой трения называется взаимодействие двух тел, возникающее в месте их соприкосновения и препятствующее их движению относительно друг друга. Различают несколько видов трения – покоя, скольжения и качения.

Первая из причин заключается в неизменной шероховатости поверхностей. Именно этот показатель влияет на то, какой вид силы трения будет иметь место. Если речь идет о гладких поверхностях, например, о покрытой металлом крыше или о ледяных участках, то их шероховатость почти не видна, однако это не значит, что ее нет – она присутствует на микроскопическом уровне. В этом случае будет действовать сила трения скольжения. Но если говорить о шкафе, стоящем на ковре, то здесь шероховатости двух объектов будут значительно препятствовать взаимному движению. Второй причиной является электромагнитное молекулярное отталкивание, которое происходит в месте контакта объектов.

Что происходит в случае, когда мы пытаемся сдвинуть с места шкаф, однако нам не удается переместить его ни на сантиметр. Что удерживает предмет на одном месте? Это сила трения покоя. Дело в том, что приложенные усилия компенсируются силой сухого трения, возникающей между шкафом и полом.

Именно сила трения покоя не дает самостоятельно развязаться шнуркам на наших ботинках, выпасть гвоздю, который мы только что вбили в стену, удерживает на месте шкаф. Без нее было бы невозможно передвигаться по земной поверхности ни людям, ни животным, ни автомобилям. Вред трения также присутствует. Он бывает в довольно глобальных масштабах, например, сила трения покоя может привести к деформации обшивки кораблей.

Для того чтобы передвинуть шкаф, необходимо приложить к нему силу, которая превзойдет трение. То есть до тех пор, пока применяемые усилия меньше показателя силы трения, мебель останется на месте. Помимо указанных факторов, есть еще сила реакции опоры, которая направленна перпендикулярно плоскости. Она зависит от материала, из которого сделан пол (здесь задействована также сила упругости). Также существует коэффициент трения, зависящий от того, из чего состоят обе поверхности, взаимодействующие друг с другом. Поэтому сила трения, действующая на шкаф, равняется коэффициенту трения, который умножается на силу реакции опоры (поверхности).

Итак, чтобы пересилить трение, мы попросили кого-нибудь нам помочь сдвинуть шкаф с места. Что мы обнаружили? Что после того, как мы приложили силу, которая превысила силу трения покоя, шкаф не только сместился, но и некоторое время продолжал двигаться в необходимую сторону, разумеется, с нашей помощью. А потраченные усилия были примерно одинаковы в течение всего пути. В этом случае нам препятствовала сила трения скольжения, направленная в противоположную от приложенного воздействия сторону. Стоит заметить, что ее сопротивление гораздо ниже, нежели у силы трения покоя. Чтобы снизить этот показатель, при необходимости применяются различные смазочные материалы.

Если мы вспомним, что когда-нибудь придется двигать шкаф обратно, то решим оснастить его колесиками. В этом случае возникающее взаимодействие будет называться трением качения, поскольку предмет уже будет не скользить, а катиться по поверхности. Катящиеся колесики будут немного вдавливаться в ковер, образовывая бугорок, который нам необходимо будет преодолеть. Этим и обуславливается сила трения качения. Разумеется, если мы покатим шкаф не по ковру, а, например, по паркету, то переместить его будет еще легче, за счет того, что поверхность паркета тверже поверхности ковра. По той же причине велосипедистам ехать по шоссе куда проще, чем по пляжу с мелким песком.

Почему ж никто не радуется?

Такой наивный детский стишок на первый взгляд – а как много содержит он, если взглянуть на него с физической точки зрения! Ведь именно в нём заключена система противоречивого отношения к пресловутой силе трения. Этот постоянный бой, где соперничают между собой два понятия — вред и польза силы трения, никогда не будет иметь победителя. Ведь то, что одному человеку удобно и выгодно, другому часто бывает совсем даже наоборот – плохо, как в этом стихотворении.

Помните рассказ Николая Носова про ледяную горку, которую строили ребята во дворе? А когда они все ушли обедать, вышел тот, который в строительстве не участвовал. Попытался он забраться на неё, да только ушибся, но забраться так и не смог. И догадался малыш посыпать лёд песком – стало очень удобно забираться на самый верх даже по льду! Так, усилив при помощи песка силу трения между скользким льдом и подошвой, мальчик понял, что польза трения позволяет преодолевать препятствия.

Но вот после обеда вышли ребятишки с ледянками, чтобы вволю накататься на своей горке. Ан не тут-то было: не едут санки по песку! Для них эта ситуация повернулась другой стороной, показав вред трения.

Подобные случаи мы наблюдаем зимой, когда мальчишки раскатывают ледяные дорожки и несутся с разбегу по ним, преодолевая расстояние за считанные минуты! А следом ковыляют пожилые люди, поскальзываются на припорошенных снежком накатах и падают, ломая руки и ноги. Вот вам опять наглядные примеры, где в одном и том же случае соседствуют и вред, и польза силы трения.

Именно для уменьшения силы трения лыжники смазывают свои лыжи специальными мазями, чтобы увеличить скорость при движении. Катки, на которых занимаются конькобежцы либо фигуристы, периодически поливают водой и очищают – тоже для уменьшения силы трения. А пешеходные дорожки, напротив, посыпают песком или золой, чтобы никто на них не падал. Некоторые изобретатели–рационализаторы придумали даже приклеивать к подошвам зимних ботинок и сапог кусочки наждачной бумаги как раз с целью увеличения силы трения.

То же самое происходит и с колёсами машин. Ведь не секрет, что с наступлением зимы, водители «обувают» своих железных коней в специальную «зимнюю резину». А иначе без полезной силы трении увеличивается тормозной путь, происходит занос машины при поворотах, она юзит, и часто водитель плохо справляется с управлением. А чем кончаются аварии, каждый знает и сам.

Что-то мы всё про зиму, да про лёд, да про падения. А есть ли другие моменты в обыденной жизни, где наглядно можно увидеть, как соревнуются между собой вред и польза силы трения? Конечно, есть! Они повсюду. Даже в нашей с вами комнате.

Вот, например, огромный и тяжёлый шифоньер. Стоит себе, как вкопанный, и не двигается. А если бы вдруг исчезла сила трения, что тогда могло бы произойти? А поехала бы эта громадина от самого лёгкого толчка по комнате! И ещё неизвестно, смогли бы мы успеть увернуться от неё. Хорошая сила трения, полезная!

Но вот мама решила переставить мебель. И нужно передвинуть этот пресловутый шкафище к другой стене. Раз – два, взяли! Три – четыре, поднапряглись! Только всё оказывается бесполезно: чем тяжелее предмет, тем крепче держится за него сила трения. Ужасная, противная силища!

Опять соперничают они между собой – вред и польза силы трения. А не нужно никакого соперничества! Надо просто хорошо знать физические законы и уметь извлекать из этих знаний практическую пользу. Не нужна в данный момент сила трения? Значит, следует её уменьшить: сделать соприкасающиеся поверхности более гладкими, скользкими. Кто-то для этого советует намазать пол мылом либо маслом, кто-то подкладывает под ножки тяжёлого предмета мокрую тряпку. И вот уже – раз – два – и готово! Сдвинули довольно легко этакую махину с места.

Сила трения постоянно сопутствует нам на протяжении всей жизни, так же, как сила тяжести. Где-то она создаёт нам неудобство, а где-то без неё никак не обойтись. Но как бы то ни было, она существует, и наша задача – научиться пользоваться физическими законами так, чтобы жизнь наша становилась удобнее и комфортнее.

источник

Сила трения встречается буквально на каждом шагу. Но знают ли люди, зачем она нужна? В чем вред и польза силы трения? Попробуем разобраться.

На земные объекты действует несколько сил, которые тесно взаимосвязаны между собой и влияют на жизнедеятельность тел. Прежде всего, это сила тяжести, упругости (внутреннее сопротивление тел в ответ на смещение их молекул) и реакции опоры. Но есть еще она очень важная физическая величина, называемая силой трения. Она в отличие от силы тяготения и упругости не зависит от расположения тел. При ее изучении действуют иные законы: коэффициент трения скольжения и сила реакции опоры. Например, если понадобится сдвинуть тяжеловесный шкаф, то с первой же минуты станет понятно, что сделать это непросто. Кроме того, при выполнении данной задачи присутствуют определенные помехи. Что же препятствует усилиям, приложенным к шкафу? А мешает этому не что иное, как сила трения, принцип действия которой изучают еще в школе. Курс физики за 7 класс подробно рассказывает об этом явлении.

С ней люди сталкиваются очень часто. Польза трения в том, что мы бы и шагу ступить не смогли, не будь этой физической величины. Именно она удерживает нашу обувь на той поверхности, куда мы ступаем. Каждый из нас ходил по очень скользким поверхностям, например, по льду, и не понаслышке знает, что это очень тяжело. Почему так происходит? Прежде чем рассказать о том, в чем вред и польза силы трения, определимся с тем, что это такое.

Силой трения называется взаимодействие двух тел, возникающее в месте их соприкосновения и препятствующее их движению относительно друг друга. Различают несколько видов трения – покоя, скольжения и качения.

Первая из причин заключается в неизменной шероховатости поверхностей. Именно этот показатель влияет на то, какой вид силы трения будет иметь место. Если речь идет о гладких поверхностях, например, о покрытой металлом крыше или о ледяных участках, то их шероховатость почти не видна, однако это не значит, что ее нет – она присутствует на микроскопическом уровне. В этом случае будет действовать сила трения скольжения. Но если говорить о шкафе, стоящем на ковре, то здесь шероховатости двух объектов будут значительно препятствовать взаимному движению. Второй причиной является электромагнитное молекулярное отталкивание, которое происходит в месте контакта объектов.

Что происходит в случае, когда мы пытаемся сдвинуть с места шкаф, однако нам не удается переместить его ни на сантиметр. Что удерживает предмет на одном месте? Это сила трения покоя. Дело в том, что приложенные усилия компенсируются силой сухого трения, возникающей между шкафом и полом.

Именно сила трения покоя не дает самостоятельно развязаться шнуркам на наших ботинках, выпасть гвоздю, который мы только что вбили в стену, удерживает на месте шкаф. Без нее было бы невозможно передвигаться по земной поверхности ни людям, ни животным, ни автомобилям. Вред трения также присутствует. Он бывает в довольно глобальных масштабах, например, сила трения покоя может привести к деформации обшивки кораблей.

Для того чтобы передвинуть шкаф, необходимо приложить к нему силу, которая превзойдет трение. То есть до тех пор, пока применяемые усилия меньше показателя силы трения, мебель останется на месте. Помимо указанных факторов, есть еще сила реакции опоры, которая направленна перпендикулярно плоскости. Она зависит от материала, из которого сделан пол (здесь задействована также сила упругости). Также существует коэффициент трения, зависящий от того, из чего состоят обе поверхности, взаимодействующие друг с другом. Поэтому сила трения, действующая на шкаф, равняется коэффициенту трения, который умножается на силу реакции опоры (поверхности).

Итак, чтобы пересилить трение, мы попросили кого-нибудь нам помочь сдвинуть шкаф с места. Что мы обнаружили? Что после того, как мы приложили силу, которая превысила силу трения покоя, шкаф не только сместился, но и некоторое время продолжал двигаться в необходимую сторону, разумеется, с нашей помощью. А потраченные усилия были примерно одинаковы в течение всего пути. В этом случае нам препятствовала сила трения скольжения, направленная в противоположную от приложенного воздействия сторону. Стоит заметить, что ее сопротивление гораздо ниже, нежели у силы трения покоя. Чтобы снизить этот показатель, при необходимости применяются различные смазочные материалы.

Читайте также:  Чем полезна каша из льна

Если мы вспомним, что когда-нибудь придется двигать шкаф обратно, то решим оснастить его колесиками. В этом случае возникающее взаимодействие будет называться трением качения, поскольку предмет уже будет не скользить, а катиться по поверхности. Катящиеся колесики будут немного вдавливаться в ковер, образовывая бугорок, который нам необходимо будет преодолеть. Этим и обуславливается сила трения качения. Разумеется, если мы покатим шкаф не по ковру, а, например, по паркету, то переместить его будет еще легче, за счет того, что поверхность паркета тверже поверхности ковра. По той же причине велосипедистам ехать по шоссе куда проще, чем по пляжу с мелким песком.

В чем состоит вред и польза силы трения любого типа? Разумеется, приведенные примеры несколько утрированы – в жизни все немного сложнее. Однако несмотря на то, что сила трения имеет очевидные минусы, создающие ряд сложностей в жизни, ясно, что без нее проблем было бы гораздо больше. Поэтому у данной величины есть свои недостатки и преимущества.

Среди примеров вреда этой силы на одном из первых мест стоит проблема перемещения тяжеловесных грузов, быстрого изнашивания любимых вещей, а также невозможности создать вечный двигатель, поскольку из-за трения любое движение рано или поздно прекращается, требуя стороннего вмешательства.

Среди примеров полезности этой силы то, что мы можем спокойно ходить по земле, не поскальзываясь на каждом шагу, наша одежда прочно сидит и мгновенно не приходит в негодность, поскольку нити ткани удерживаются благодаря трению. Кроме того, люди используют принцип действия этой силы, посыпая скользкие дороги, из-за чего удается избежать множества аварий и травм.

Человечество научилось взаимодействовать с данной физической величиной, увеличивая и уменьшая ее в зависимости от поставленных целей. Наша непосредственная задача – попытаться использовать ее максимально эффективно.

источник

ТРЕНИЕ ПОЛЕЗНОЕ И ВРЕДНОЕ. Сила трения всегда способствует любому движению. Она возникает при непосредственном соприкосновении тел и всегда направлена. — презентация

Презентация была опубликована 5 лет назад пользователемВалерий Чеботарев

Презентация на тему: » ТРЕНИЕ ПОЛЕЗНОЕ И ВРЕДНОЕ. Сила трения всегда способствует любому движению. Она возникает при непосредственном соприкосновении тел и всегда направлена.» — Транскрипт:

1 ТРЕНИЕ ПОЛЕЗНОЕ И ВРЕДНОЕ

2 Сила трения всегда способствует любому движению. Она возникает при непосредственном соприкосновении тел и всегда направлена вдоль поверхности соприкосновения. Сила трения всегда способствует любому движению. Она возникает при непосредственном соприкосновении тел и всегда направлена вдоль поверхности соприкосновения

3 . Трение имеет большое значение как в природе, так и в технике. Трение имеет большое значение как в природе, так и в технике. Трение может быть : Трение может быть : 1. ПОЛЕЗНЫМ 1. ПОЛЕЗНЫМ 2. ВРЕДНЫМ 2. ВРЕДНЫМ Когда оно полезно, его стараются Когда оно полезно, его стараются увеличить, когда вредно увеличить, когда вредно уменьшить уменьшить

4 Примеры трения в повседневной жизни человека: человека: Без трения покоя ни люди, ни животные не могли бы ходить по земле, так как при ходьбе мы отталкиваемся ногами от земли. Когда трение между подошвой обуви и землей (или льдом) мало, например в гололедицу, то отталкиваться от земли очень трудно, ноги при этом скользят. Чтобы ноги не скользили, тротуары посыпают песком. Это увеличивает силу трения между подошвой обуви и льдом.

5 Не будь трения, предметы выскальзывали бы из рук. Сила трения останавливает автомобиль при торможении, но без трения покоя он не смог бы и начать движенность шин у автомобиля делают с ребристыми выступами. Зимой, когда дорога бывает особенно скользкая, ее посыпают песком, очищают ото льда. Не будь трения, предметы выскальзывали бы из рук. Сила трения останавливает автомобиль при торможении, но без трения покоя он не смог бы и начать движенность шин у автомобиля делают с ребристыми выступами. Зимой, когда дорога бывает особенно скользкая, ее посыпают песком, очищают ото льда. Не будь трения, предметы выскальзывали бы из рук. Сила трения останавливает автомобиль при торможении, но без трения покоя он не смог бы и начать движение. Колеса, вращаясь, проскальзывали бы, а автомобиль продолжал бы стоять на месте, буксовал. поверхность шин у автомобиля делают с ребристыми выступами. Зимой, когда дорога бывает особенно скользкая, ее посыпают песком, очищают ото льда. Чтобы увеличить трение,

6 У многих растений и животных имеются различные органы, служащие для хватания (усики растений, хобот слона, цепкие хвосты лазающих животных). Все они имеют шероховатую поверхность для увеличения трения.

7 Вредное трение: Но мы уже говорили, что во многих случаях трение вредно и с ним приходится бороться. Например, во всех машинах из- за трения нагреваются и изнашиваются движущиеся части. Для уменьшения трения соприкасающиеся поверхности делают гладкими, между ними вводят смазку. Но мы уже говорили, что во многих случаях трение вредно и с ним приходится бороться. Например, во всех машинах из- за трения нагреваются и изнашиваются движущиеся части. Для уменьшения трения соприкасающиеся поверхности делают гладкими, между ними вводят смазку. Чтобы уменьшить трение Чтобы уменьшить трение вращающихся валов машин и станков, их опирают на подшипники. вращающихся валов машин и станков, их опирают на подшипники.

8 Шариковые и роликовые подшипники: Мы знаем, что сила трения качения при одинаковой нагрузке значительно меньше силы трения скольжения.На этом явлении основано применение шариковых и роликовых подшипников. В таких подшипниках вращающийся вал не скользит по неподвижному вкладышу подшипника, а катится по нему на стальных шариках или роликах.При вращении вала внутреннее кольцо катится на шариках или роликах, находящихся между кольцами.Замена в машинах подшипников скольжения шариковыми или роликовыми подшипниками позволяет уменьшить силу трения в 2030 раз.

9 Шариковые и роликовые подшипники используют в разнообразных машинах: автомобилях, токарных станках, электрических двигателях, велосипедах и т. д. Без подшипников невозможно представить современную промышленность и транспорт Без подшипников невозможно представить современную промышленность и транспорт

источник

Описание презентации по отдельным слайдам:

Трение – полезное или вредное явление?

Вопросы для повторения : Какую силу называют силой трения? Каковы причины трения? Какие виды трения вы знаете? Как можно измерить силу трения? Как обозначают силу трения и в каких единицах измеряют? Способы уменьшения силы трения.

А если бы трения не было … Без трения покоя ни люди, ни животные не могли бы ходить по Земле. Когда трение между подошвой обуви и землёй мало, например, в гололедицу, то отталкиваться от земли очень трудно, ноги при этом скользят. Чтобы ноги не скользили, тротуары посыпают песком. Это увеличивает силу трения между подошвой обуви и льдом. Нельзя было бы сделать ботинки, так как нитки в швах не держались бы, гвоздики выскакивали бы из кожи. Новые ботинки были бы как старые. Да и узел бы не держался бы. Он ведь удерживается только трением. Веревки не было бы — она растрепалась бы на отдельные волоконца.

Трение вредно Из -за трения нагреваются и изнашиваются движущиеся части. Для уменьшения трения соприкасающиеся поверхности делают гладкими, между ними вводят смазку. Также из-за трения протерается одежда на локтях. Почти вся механическая энергия, вырабатываемая двигателями всех видов транспорта -автомашинами, мотоциклами, тепловозами расходуется на преодоление разных видов трения. Если представить, сколько в мире машин и сколько они потребляют топлива!

Трение полезно Осенью у трамвайных путей, идущих под уклон вблизи деревьев, вывешивается табличка «Листопад. Берегись юза!». Что же такое юз? Юзом называется скольжение уже заторможенного, невращающегося колеса. Попавшие под колеса свежие листья при раздавливании дают влагу, уменьшающую трение.

Трение полезно Среди живых организмов распространены приспособления (шерсть, щетина, чешуйки, шипы, расположенные наклонно к поверхности), благодаря которым трение получается малым при движении в одном направлении и большим – при движении в противоположном направлении. На этом принципе основано движение дождевого червя. Щетинки, направленные назад, свободно пропускают тело червя вперед, но тормозят обратное движение. При удлинении тела головная часть продвигается вперед, а хвостовая остается на месте, при сокращении головная часть задерживается, а хвостовая подтягивается к ней. У многих растений и животных имеются различные органы, служащие для хватания (усики растений, хобот слона, цепкие хвосты лазающих животных). Все они имеют шероховатую поверхность для увеличения силы трения.

Как выглядел бы мир без трения? А представьте себе. что пол в вашей комнате стал ещё более скользким, чем каток; вот в этом случае вы и получите отдалённое представление о ходьбе в мире без трения – она в таком мире почти невозможна. Люди поминутно падали бы и не могли подняться. Ведь толькотрение(точнее: трение покоя) позволяет нам отталкиваться ногами, шагая вдоль по ровной дороге. На столе ничего не лежало бы: при малейшем -наклоне всё съезжало бы на пол, скользило и катилось по нему, стараясь добраться до самого низкого места. В самом деле, ведь только сила трения покоя удерживает предметы на слегка наклонном гладком столе и полу и не даёт им съезжать под действием силы тяжести. Все узлы немедленно развязывались бы; ведь узлы держатся только благодаря трению одних частей верёвки, шнурка или бечёвки о другие. Все ткани расползались бы по ниткам, а нитки – в мельчайшие волокна. Но не только ходить в мире без трения было бы невозможно. Каким образом, например, мог бы шофёр остановить свою машину? Ведь автомобиль тормозят тем, что прижимают к специальным барабанам, вращающимся вместе с колёсами, тормозные колодки (или ленты).Повернуть машину в мире без трения тоже не удалось бы. Вспомните, что в гололедицу автомобиль не только «идёт юзом», но и не слушается руля. Без трения автомобиль не только нельзя остановить или повернуть, его вообще нельзя заставить катиться. Мотор приводит во вращение задние ведущие колёса автомобиля. Но в мире без трения вращающиеся ведущие колёса автомобиля будут «буксовать», как это часто бывает в зимнее время на обледеневшей дороге. Чтобы колёса катились, необходимо трение их о дорогу.

1. Лошадь везет телегу. Где здесь сила трения полезна, а где вредна? СКАЗКА «РЕПКА» Кошка за Жучку Жучка за внучку Внучка за бабку Бабка за дедку Дедка за репку Тянут – потянут, вытянуть не могут. 1. Маленькую или большую репку вытягивать легче? 2. Из какого грунта – глинистого, песчаного или чернозема – труднее вытягивать репку? 3. Если бы прошел сильный дождь или дед хорошо бы полил участок, смог бы он один вытащить репку?

Трение – нам друг или враг? Что такое трение? Трение — явление. Враг оно нам или друг? Это знают все вокруг. Если б трение пропало, Что со всеми нами стало? Мы ходить бы не смогли, Оттолкнувшись от Земли. Если б взяли что — то вдруг. Оно выпало б из рук. Помогает трение Начинать движение Всем машинам, тракторам, Мотоциклам, поездам. ! Ну а так же тормозить И их всех остановить Очень нужно трение нам. Всем растениям и зверям! Но притом приносит вред и не мало разных бед. В станках, приборах трутся части, И это — главное несчастье. Ну и все автомашины Быстро снашивают шины! И поэтому вопрос Не настолько уж и прост: Трение — друг нам или враг? Ответ двоякий: так и так!

Продолжи фразу: Сегодня на уроке открыл для себя… Мне понравилось на уроке то, что…. На уроке меня порадовало…. Я удовлетворен своей работой, потому что….

Готовы ли вы к контрольной работе? Что еще не успели усвоить в этой теме? — Формулы? — Изображение сил? — Сложение сил?

Домашнее задание: Для всех: п. 23 – 32 повторить Заполнить таблицу. Для желающих: Найти пословицы о силе трения Трение полезно. Трение вредно.

Пословицы и поговорки связанные с трением. 1. Не подмажешь- не поедешь; 2. Пошло дело, как по маслу; 3. Угря в руках не удержишь; 4. Что кругло легко катиться; 5. Лыжи скользять по погоде; 6. Коси коса пока роса; роса долой и мы домой; 7. Колодезная веревка сруб перетирает; 8. Ржавый плуг только на пахоте очищается.

источник

Если вы попробуете сдвинуть тяжелый шкаф, полный вещей, то как-то сразу станет понятно, что не так все просто, и что-то явно мешает благому делу наведения порядка.

  • И мешать движению будет не что иное, как работа силы трения, которую изучают в курсе физики седьмого класса.

С трением мы сталкиваемся на каждом шагу. В прямом смысле этого слова. Вернее было бы сказать, что без трения мы и шагу ступить не можем, так как именно силы трения удерживают наши ноги на поверхности.

Любой из нас знает, что такое ходить по очень скользкой поверхности – по льду, если этот процесс вообще можно назвать ходьбой. То есть, мы сразу видим очевидные плюсы силы трения. Однако, прежде чем говорить о пользе или вреде сил трения, рассмотрим для, начала, что такое сила трения в физике.

Взаимодействие, которое возникает в месте соприкосновения двух тел и препятствует их относительному движению, называют трением. А силу, которая характеризует это взаимодействие, называют силой трения.

  • Различают три вида трения: трение скольжения, трение покоя и трение качения.

В нашем случае, когда мы пытались сдвинуть шкаф с места, мы пыхтели, толкали, краснели, но не сдвинули шкаф ни на дюйм. Что удерживает шкаф на месте? Сила трения покоя. Теперь другой пример: если мы положим руку на тетрадь и будем двигать ее по столу, то тетрадь будет двигаться вместе с нашей рукой, удерживаемая все той же силой трения покоя.

Трение покоя удерживает вбитые в стену гвозди, мешает самопроизвольно развязываться шнуркам, а также держит на месте наш шкаф, чтобы мы, случайно опершись на него плечом, не задавили любимого кота, который вдруг улегся подремать в тишине и покое между шкафом и стеной.

Вернемся к нашему пресловутому шкафу. Мы, наконец, сообразили, что сдвинуть его в одиночку нам не удастся и позвали на помощь соседа. В конце концов, исцарапав весь пол, вспотев, напугав кота, но, так и не выгрузив вещи из шкафа, мы передвинули его в другой угол.

Что мы обнаружили, кроме клубов пыли и не обклеенного обоями куска стены? Что, когда мы приложили силу, превышающую силу трения покоя, шкаф не просто сдвинулся с места, но и (с нашей помощью, естественно) продолжил двигаться дальше, до нужного нам места. И усилия, которые приходилось затрачивать на его передвижение, были примерно одинаковы на всем протяжении пути.

  • В данном случае нам мешала сила трения скольжения. Сила трения скольжения, как и сила трения покоя, направлена в сторону, противоположную приложенному воздействию.

В случае, когда тело не скользит по поверхности, а катится, то, возникающее в месте контакта трение, называют трением качения. Катящееся колесо немного вдавливается в дорогу, и перед ним образуется небольшой бугорок, который приходится преодолевать. Именно этим и обусловлено трение качения.

Чем тверже дорога, тем меньше трение качения. Именно поэтому ехать по шоссе намного легче, чем по песку. Трение качения в подавляющем большинстве случаев ощутимо меньше трения скольжения. Именно поэтому повсеместно применяют колеса, подшипники и так далее.

Первая – это шероховатость поверхности. Это хорошо понятно на примере досок пола или поверхности Земли. В случае же более гладких поверхностей, например, льда или покрытой металлическими листами крыши, шероховатости почти не видны, но это не значит, что их нет. Эти шероховатости и неровности цепляются друг за друга и мешают движению.

Вторая причина – это межмолекулярное притяжение, которое действует в местах контакта трущихся тел. Однако, вторая причина проявляется, в основном, лишь в случае очень хорошо отполированных тел. В основном же, мы имеем дело с первой причиной возникновения сил трения. И в таком случае, чтобы уменьшить силу трения, часто применяют смазку.

  • Слой смазки, чаще всего жидкий, разъединяет трущиеся поверхности, и трутся между собой слои жидкости, сила трения в которых в разы меньше.

В курсе физики седьмого класса школьникам дают задание написать сочинение на тему «Сила трения». Примером сочинения на эту тему может служить примерно такая фантазия:

«Допустим, решили мы на каникулах съездить к бабушке в гости на поезде. И не в курсе того, что как раз в это время вдруг, ни с того ни с сего, пропала сила трения. Проснулись, встаем с кровати и падаем, так как силы трения между полом и ногами нет.

Начинаем обуваться, и не можем завязать шнурки, которые не держатся из-за отсутствия силы трения. С лестницей вообще туго, лифт не работает – он уже давно лежит в подвале. Пересчитав копчиком абсолютно все ступени и доползя как-то до остановки, обнаруживаем новую беду: ни один автобус не остановился на остановке.

Чудом сели в поезд, думаем, какая красота – тут хорошо, топлива уходит меньше, так как потери на трение сведены к нулю, быстрее доедем. Но вот в чём беда: силы трения между колёсами и рельсами нету, а, значит, и оттолкнуться поезду не от чего! Так что, в общем, как-то и не судьба съездить к бабушке без силы трения.»

Конечно же, это фантазия, и она полна лирических упрощений. В жизни все немного по-другому. Но, по сути, несмотря на то, что есть очевидные минусы силы трения, которые создают для нас ряд сложностей в жизни, очевидно, что без существования сил трения, проблем было бы куда как побольше. Так что нужно говорить, как о вреде сил трения, так и о пользе все тех же сил трения.

Примерами полезных сторон сил трения можно назвать то, что мы можем ходить по земле, что наша одежда не разваливается, так как нитки в ткани удерживаются благодаря все тем же силам трения, что насыпав на обледеневшую дорогу песок, мы улучшаем сцепление с дорогой, дабы избежать аварии.

Ну а вредом силы трения является проблема перемещения больших грузов, проблема изнашивания трущихся поверхностей, а также невозможность создания вечного двигателя, так как из-за трения любое движение рано или поздно останавливается, требуя постоянного стороннего воздействия.

Люди научились приспосабливаться и уменьшать, либо увеличивать силы трения, в зависимости от необходимости. Это и колеса, и смазка, и заточка, и многое другое. Примеров масса, и очевидно, что нельзя однозначно сказать: трение – это хорошо или плохо. Но оно есть, и наша задача – научиться использовать его на пользу человека.

Все неприличные комментарии будут удаляться.

источник

Трение: вредное, полезное, любопытное

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

Трение: вредное, полезное, любопытное

Руководитель: Королев Юрий Алексеевич,

.1 История развития учения о трении

.5 Способы уменьшения трения

.6 Вредное и полезное трение

.10 Трение в жизни растений и животных

В наше время знание основ физики необходимо каждому, чтобы иметь правильное представление об окружающем. Среди всех изучаемых предметов физика является одних из тех, которые вызывают у меня большой интерес. Я хочу повышать и совершенствовать свои знания в этой трудной, но увлекательной науке. Учебно-исследовательская реферативная деятельность дает мне такую возможность.

Трение, хотя и изучается в 7 классе, остается одним из самых трудных вопросов естествознания. В работе я описываю виды трения и причины возникновения каждого из них.

В исследовании собраны данные о новых открытиях в этой области и о применении этих открытий. Особый интерес представляет раздел «Трение в живой природе». Как мудро всё устроено в нашем мире! Каждое животное использует силу трения для того, чтобы быстрее двигаться, крепче держать добычу. При этом решая важную задачу его регулирования. Ведь трение не всегда наш помощник, во многих случаях с ним приходится бороться. Много собрано интересного материала по всем разделам представленной работы.

Читайте также:  Полезные изделия для дома своими руками

Трение встречается буквально на каждом шагу, без него и шага не сделаешь. Держу ручку в руке — трение, стоят на столе всякие предметы, не соскальзывают — трение; гвозди держат полку с книгами, не вылезают из стены — трение. Куда не бросишь свой взгляд, кругом трение, трение, трение.

Трение поругивают, когда оно препятствует движению, похваливают, когда трение способствует движению. К трению привыкли за 400 лет (со времени его открытия), увеличивают или уменьшают его, когда это необходимо, и не удивляются самому факту существования трения везде и всюду, во всех явлениях природы.

Почему с сумками в руках по скользкой дороге идти легче? Почему звучит скрипичная струна, когда по ней ведут смычком? Ведь смычок движется, а колебания струны периодические. Почему бегуны-спринтеры бегают в шиповках, а стайеры — в мягкой обуви (а то и босиком!)? Сухое мыло не выскальзывает из сухих рук, а мокрое из мокрых частенько. Почему?

Ответы на все эти и многие другие важные вопросы, связанные с движением тел, дают законы трения.

В своей работе я попытаюсь разобраться в причинах трения и способах его изменения. Главной своей задачей ставлю раскрыть тайны знакомой нам с детства силы трения

2 . 1 История развития учения о трении

Впервые попытки осмыслить природу трения были сделаны Аристотелем). Опираясь на наблюдаемые факты, он отмечал, что любое, в том числе равномерное, перемещение реальных тел в горизонтальной плоскости всегда встречает внешнее сопротивление, причем это сопротивление зависит от веса тела.

Открытие Галилеем в конце XVI века закона инерции и понятия о массе тела позволило четко разграничить сопротивление движению, вызываемое инерцией и возникающее лишь при изменении скорости, от сопротивления внешней среды, которое имеется и при постоянной скорости и вызвано силами внешнего трения.

Значительный вклад в изучение причин трения внес Леонардо да Винчи. Обосновывая невозможность создания вечного двигателя, одной из причин этого он считал трение. Леонардо да Винчи впервые ввел понятие коэффициента трения, показал, что сила трения зависит от материала соприкасающихся поверхностей, от качества их обработки, прямо пропорциональна нагрузке и может быть уменьшена путем установки роликов или введения смазки между поверхностями трения. Он является изобретателем роликового и шарикового подшипников.

Первые исследования трения, о которых мы знаем, были проведены Леонардо да Винчи примерно 500 лет назад. Он измерял силу трения, действующую на деревянные параллелепипеды, скользящие по доске, причём, ставя бруски на разные грани, определял зависимость силы трения от площади опоры. Но работы Леонардо да Винчи стали известны уже после того, как классические законы трения были вновь открыты французскими учёными Амонтоном и Кулоном в XVII — XVIII веках

В 1699 г. француз Амонтон (рис. 1) впервые сформулировал знаменитый эмпирический закон линейной зависимости силы трения от нагрузки:

где µ — коэффициент трения;- нормальная к плоскости трения нагрузка.

Высказанная Амонтоном идея, объясняющая природу трения, как подъем одного тела по неровностям другого разделялась многими крупными ученными вплоть до конца XVIII в.

Большую роль в дальнейшем развитии представлений о трении сыграл Л. Эйлер (рис. 2), первый убедительно объяснивший (в 1750 г.) причину того факта, что сопротивление при переходе от состояния покоя к относительному движению всегда больше, чем сопротивление скольжению при тех же условиях.

Создателем науки о трении по праву считается великий французский ученый Шарль Кулон (рис. 3).

В своем труде «Теория простых машин» (1781 г.) он охватил основные аспекты трения: сопротивление скольжению, сопротивление качению и сопротивление страгиванию. Кулон был первым, кто понял, что трение обусловлено множеством факторов (нагрузкой, скоростью скольжения, материалом трущихся деталей, шероховатостью их поверхностей и др.). Исследуя трение качения, Кулон впервые вывел формулу сопротивления перекатыванию:

где k- коэффициент трения качения, имеющий размерность длины;

Р- вес свободно катящегося цилиндра радиусом R.

Эта классическая формула используется и сейчас, хотя предпринимались многочисленные попытки ее опровергнуть. Несмотря на фундаментальный вклад Кулона в теорию трения, он игнорировал энергетический и тепловой аспекты этого явления, без которых механизм трения понять невозможно.

Первым ученым, доказавшим, что механическая энергия при трении не исчезает, а превращается в тепло, был англичанин Бенжамин Томпсон (Рис. 4) .

Наблюдая за сверление пушечных стволов, он пришел к выводу, что сильный нагрев заготовок есть прямой результат перехода подводимой к сверлу механической энергии в тепловую вследствие интенсивного трения инструмента о металл.

Итак, вот классические законы трения, открытые французскими учёными Амонтоном и Кулоном в XVII — XVIII веках:

. Величина силы трения F прямо пропорциональна величине силы нормального давления N тела на поверхность, по которой движется тело, т.е.

. Сила трения не зависит от площади контакта между поверхностями;

. Коэффициент трения зависит от свойств трущихся поверхностей;

. Сила трения не зависит от скорости движения тела.

Дальнейший вклад в энергетические аспекты теории трения был сделан Майером (1842 г.), Джоулем (1843 г.), Гельмгольцем (1847 г.). Тогда же ( в середине XIX в.) были высказаны и первые предположения об адгезионной природе трения (адгезия — сцепление, слипание поверхностей прижатых друг к другу тел). Исследование роли адгезионных связей в трении получило дальнейшее развитие в различных физических теориях трения в 30-40-х годах XX в. (советские ученые В.Д. Кузнецов, Б.В. Дерягин, англичанин Д.А. Томлинсон и др.). В течение многих лет выдвигались и обосновывались различные гипотезы и модели трения. Однако оказалось, что познать в известном смысле сложную и сверхсложную систему (явление) — это значит разумно упростить ее, сохраняя все необходимые и достаточные факторы.

Таким выдающимся упрощением явилась модель дискретного контактирования твердых тел при трении и гипотеза о двойственной природе фрикционного контакта твердых тел. В 50-60-х годах XX в. И.В. Крагельским, Ф. Боуденом и Д. Тейбором на основе этой модели была создана современная молекулярно-механическая теория трения. На сегодняшний день важнейшим итогом развития этой теории является четкая картина процессов трения и износа твердых тел, охватывающая физические (включая механические) и химические сопутствующие явления.

Давайте рассмотрим три вида трения: трение скольжения, трение покоя, трение качения.

Начнем с трения скольжения. Что же такое трение скольжения? Трение скольжения — это сила, возникающая при поступательном перемещении одного из контактирующих тел относительно другого и действующая на это тело в сторону, противоположную движению (рис. 5).

Трение — следствие многих причин, но основными из них являются две.

Во-первых, поверхности тел всегда неровны, и зазубрины одной поверхности цепляются за шероховатости другой (рис. 6) Это так называемое геометрическое трение. (Даже самые гладкие на глаз поверхности оказываются под микроскопом шероховатыми, с впадинами и выступами.)

Рис. 6. Геометрическое трение.

Во-вторых, трущиеся тела очень близко соприкасаются друг с другом (рис. 7), и на их движении сказывается взаимодействие молекул (молекулярное трение).

Рис. 7. Молекулярное трение.

Поэтому формулу для силы трения можно написать так: F= ?N+?S.

В этой формуле ? и ? — постоянные коэффициенты, N — сила нормального давления, a S — площадь контакта трущихся тел. Так как площадь контакта не очень мала, деформации соприкасающихся тел ничтожны.

Приведенная формула сложна, и поэтому инженеры в своих расчетах пользуются более простой формулой:

Она читается так: сила трения пропорциональна силе нормального давления. Коэффициент пропорциональности µ называется коэффициентом трения.

Закон F=µN становится неверным тогда, когда сила нормального давления или скорость движения велики. В этом случае выделяется слишком много тепла, что сказывается на трении.

Трение объясняется двумя причинами: неровностями трущихся поверхностей тел и молекулярным взаимодействием между ними. Если выйти за пределы механики, то следует сказать, что силы трения имеют электромагнитное происхождение, как и силы упругости. Каждая из указанных выше двух причин трения в разных случаях проявляет себя в разной мере. Например, если соприкасающиеся поверхности твердых трущихся тел имеют значительные неровности, то основная слагаемая в возникающей здесь силе трения будет обусловлена именно данным обстоятельством, т.е. неровностью, шероховатостью поверхностей трущихся тел.

Если соприкасающиеся поверхности твердых трущихся тел отлично отшлифованы и гладки, то основная слагаемая возникающей при этом силы трения будет определяться молекулярным сцеплением между трущимися поверхностями тел.

Сухое трение имеет ещё одну существенную особенность: наличие трения покоя. В жидкости или газе трение возникает только при движении тела, и тело можно сдвинуть, приложив к нему даже очень маленькую силу. Однако при сухом трении тело начинает двигаться только тогда, когда проекция приложенной к нему силы F на плоскость, касательную к поверхности, на которой лежит тело, станет больше некоторой величины (рис. 8). Пока тело не начало скользить, действующая на него сила трения равна касательной составляющей приложенной силы и направлена в противоположную сторону.

Попробуйте сдвинуть книгу, лежащую на столе. Для этого потребуется некоторое усилие. И если на книгу нажать слишком слабо — она не тронется с места. Ей мешает двигаться сила трения между нижней обложкой книги и столом. Эта сила трения препятствует твёрдым телам приходить в движение. Поэтому она называется силой трения покоя. С какой бы стороны вы ни нажимали на книгу, сила трения покоя препятствует началу скольжения книги. Сила трения покоя направлена всегда против направления «сдвигающей» силы (рис. 9)

Рис. 9. Трение покоя препятствует скольжению.

Итак, сила трения покоя всегда равна по величине внешней силе, действующей на тело, и направлена в противоположную сторону. Чем больше приложенная к покоящемуся телу сила, тем больше сила трения покоя! Существует максимальная сила трения покоя, превышая которую мы замечаем, что тело сдвинулось с места (рис. 10).

Рис. 10. Максимальная сила трения покоя.

Для того чтобы сдвинуть тело с места, к нему нужно приложить большую силу, чем для того, чтобы тащить тело, т.е. максимальная сила трения покоя больше силы трения скольжения.

Однако, во многих случаях приближенно максимальную силу трения покоя можно считать равной силе трения скольжения.. Эта модель силы сухого трения применяется при решении многих простых физических задач .

Давайте рассмотри третий вид трения. Это трение качения. Сила трения качения определяется как сила, необходимая для равномерного прямолинейного качения тела по горизонтальной плоскости. Опытом установлено, что сила трения качения вычисляется по формуле:

где F-сила трения качения; к-коэффициент трения качения; Р-сила давления катящегося тела на опору и R-радиус катящегося тела.

Из практики очевидно, из формулы ясно, что чем больше радиус катящегося тела, тем меньшее препятствие оказывают ему неровности поверхности опоры.

Заметим, что коэффициент трения качения, в отличие от коэффициента трения скольжения, именованная величина и выражается в единицах длины (обычно в см).

Трение качения обусловлено деформациями.

Поставим колесо на дорогу, приложим к нему силу тяжести G, нормальную силу N со стороны дороги и будем давить на ось колеса силой P, пытаясь сдвинуть (рис. 11).

Рис. 11. Приложение силы к колесу, поставленному на дорогу.

Мешает ли теоретически нам что-нибудь? Да нет! Получается парадокс — выходит, при качении нет никакого сопротивления? Но заметьте, что мы совершенно не учли деформацию колеса, оно у нас как бы «абсолютно твердое», тверже алмаза. Тогда, конечно, сопротивления нет. Поэтому, чтобы уменьшить сопротивление трению качения, колеса и дорогу делают из очень твердых материалов — не алмаза, конечно, а например, из стали. Железнодорожные колеса имеют сопротивление в несколько раз меньше, чем автомобильные, более мягкие.

Что же происходит с «мягким» колесом при его движении? В контакте с дорогой его немного расплющивает, и из-за гистерезиса (неупругих потерь, которые всегда есть в любом упругом теле при его деформациях) сила давления дороги N чуть смещается вперед по движению (рис. 12).

Рис. 12. «Мягкое» колесо при движении.

Вот и появилось плечо силы a, которое надо преодолевать, а значит, и трение качения! Чем больше диаметр колеса и чем тверже оно (при твердой дороге), тем меньше оно сопротивляется качению.

Вот почему у вездеходов большие колеса, а у поездов и трамваев они такие твердые. Легковому автомобилю, к сожалению, нельзя позволить себе ни того, ни другого. Если колеса будут слишком большими, как у старинных велосипедов, например, автомобиль станет уродливым, с трудом сможет поворачивать, колеса будут излишне тяжелыми. Ну а вот твердыми их тоже сделать нельзя, они будут резать асфальт, как сошедший с рельсов трамвай, а если не резать, то тряска будет невозможной — мягкие шины «демпфируют» вибрации от неровностей дороги. Вот и приходится идти на компромисс!

Но почти во всех случаях трение качения меньше трения скольжения. Сухого, заметьте. С жидкостным трением многое обстоит иначе. Поэтому еще с древних времен пытались поставить тяжелые предметы на катки, а потом и на колеса. Это делали даже древние египтяне.

Обратимся теперь к рисунку. На нем приведены различные коэффициенты трения скольжения и качения. Надпись «сталь/чугун» означает: коэффициент трения стали по чугуну». Для трения скольжения материалы можно поменять местами, значение коэффициента не изменится. А вот для коэффициента трения качения это не так. Например, колесо из стали испытывает большее сопротивление качения по дереву, чем наоборот. И это понятно. Колесо из дерева практически не вдавливается в твердую сталь, поэтому сопротивление качения в этом случае в пять раз меньше, чем когда колесо из стали катится по деревянному настилу.

Рассматривая рисунок, вы найдете много других сведений для сопоставления и размышления (таблица 1).

В гонках участвует далеко не каждый, а вот ездить на автомобиле, мотоцикле, велосипеде приходится очень многим. Как лучше тормозить, если перед вами возникает препятствие?

На поставленный вопрос отвечает вот такой график (рис. 14).

Если вы тормозите скольжением, намертво зажимая колеса (так называемый юз), то тормозной путь будет длиннее, чем при торможении качением (колеса заторможены, но проворачиваются), зато скорость вначале падает более резко. Поэтому при опасности наезда надо всегда тормозить юзом. Лучше ударить с меньшей скоростью, так как энергия удара пропорциональна квадрату скорости. Во всех остальных случаях надо тормозить качением: и тормозной путь будет короче, и шины меньше изнашиваются.

.5 Способы уменьшения трения

трение закон скольжение качение

В технике для уменьшения влияния сил сухого трения между поверхностями вводят смазку (вязкую жидкость, создающую тонкий слой между твёрдыми поверхностями).

Влияние смазки заключается в том, что между трущимися поверхностями вводится слой вязкой жидкости, которая заполняет все неровности поверхностей и, прилипая к ним, образует два трущихся слоя жидкости (рис. 15)

Поэтому вместо трения двух твердых поверхностей при смазке возникает внутреннее трение жидкости, которое значительно меньше внешнего трения двух твердых поверхностей. Применение смазочных масел уменьшает трение в 8-10 раз. Типичный пример значения смазки представляет бег конькобежца на коньках. В результате действия силы со стороны конькобежца на нож конька снег тает и под коньком появляется вода, которая вновь замерзает, после того как пробежал конькобежец и исчезло давление. Однако в механизмах вода для смазки не годится, поскольку вследствие малой вязкости она выдавливалась бы из зазора неровностей между трущимися поверхностями.

Во всех машинах есть одна общая черта: в любой из них что-нибудь обязательно вращается. И везде есть неразлучная пара — ось и её подпорка — подшипник

Поскольку силы трения качения значительно меньше сил трения скольжения, то в машинах и механизмах в большинстве случаев подшипники скольжения заменяют подшипниками качения (рис. 16).

Подшипник состоит из двух колец. Одно из них — внутреннее — плотно насажено на ось и вращается вместе с ней. Другое — наружное кольцо — неподвижно зажато между основанием и крышкой подшипника.

Эти кольца — обоймы имеют на обращенных друг к другу поверхностях выточенные канавки. Между обойм находятся стальные шарики. При кручении подшипника шарики катятся по канавкам в обоймах.

Чем лучше отполированы поверхности дорожек и шариков, тем меньше трение. Чтобы шарики не сбегались в одну кучу, их разделяет сепаратор. Сепараторы обычно делаются пластиковые, стальные или бронзовые.

При вращении в таком подшипнике появляется трение качения. Потери на трение в шариковом подшипнике раз в 20-30 меньше, чем в подшипнике скольжения! Подшипники качения делают не только с шариками, но и с роликами разной формы. Без подшипников качения современная промышленность и транспорт были бы невозможны.

В настоящее время широко применяется такой способ уменьшения трения при движении транспортных средств, как воздушная подушка.

Воздушная подушка (рис. 17) — это слой сжатого воздуха под транспортным средством, который приподнимает его над поверхностью воды или земли. Слой сжатого воздуха создаётся вентиляторами. Отсутствие трения о поверхность позволяет снизить сопротивление движению. От высоты подъёма зависит способность такого судна двигаться над различными препятствиями на суше или над волнами на воде.

Схема работы судна с воздушной подушкой: 1 — маршевые винты; 2 — поток воздуха; 3 — вентилятор; 4 — гибкая перепонка (юбка).

Первым идею подобной машины на воздушной подушке высказал К.Э. Циолковский в 1927 году, в работе «Сопротивление воздуха и скорый поезд». Это бесколесный экспресс, который мчится над бетонной дорогой, опираясь на воздушную подушку — слой сжатого воздуха.

2.6 Вредное и полезное трение

Трение может быть как вредным так и полезным.

Трение тормозит движение; на преодоление трения всех видов расходуется громадное количество ценного топлива. Трение вызывает износ трущихся поверхностей: стираются подошвы, шины автомобилей, детали машин. Вредное трение стараются уменьшить.

Но иногда в трении — польза!

В каких-то случаях отсутствие трения грозит большими неприятностями (например, торможение автомобилей происходит только за счет сил трения, возникающих между колодками и барабаном), его стараются увеличить, например, при ходьбе в гололед.

В повседневной жизни силы трения так же играют как положительную, так и отрицательную роль, причем их проявления разнообразны. На использовании статического трения основаны скрепление деталей при помощи гвоздей, движение человека и автомобиля по земной поверхности. Можно представить, какие возникли бы трудности при ходьбе, если бы не существовало сил статического трения (например, при гололеде). Вообще говоря, если бы не было сил трения, невозможно было бы удержать любой предмет в руке. Во многих случаях роль сил трения наоборот отрицательна. Трение со временем разрушает движущиеся детали, поэтому чем больше их в механизме, тем он менее долговечен.

Но бывают исключения, когда даже если сила трения вредно, но не повреждает предмет или как то ему мешает. Такое исключение песочные часы (рис. 18).

Таким образом, трение бывает в каких-то случаях полезным, а в каких-то вредным!

.7 Жюль-верновский силач и формула Эйлера

А как увеличить трение в 5, 10… 100 раз? Можно, оказывается, и это. Нужно только обмотать один трущийся предмет о другой, например, веревку о вал или опору. Так делают, когда закрепляют корабли на пристанях, обматывая канат вокруг кнехтов — столбиков на причале. Влияние навивки на силу трения просто поразительное!

Вы помните у Жюля Верна силача-атлета Матифу? «Великолепная голова, пропорциональная исполинскому росту; грудь, похожая на кузнечный мех; ноги — как хорошие брёвна, руки — настоящие подъёмные краны. С кулаками, похожими на молоты…» Вероятно из подвигов этого силача, описанных в романе «Матиас Стандорф», вам памятен поразительный случай с судном «Трабоколо», когда наш гигант силой могучих рук задержал спуск целого корабля.

Вот как рассказывает романист об этом подвиге:

«Судно, освобождённое уже от подпорок, которые поддерживали его по бокам, было готово к спуску. Достаточно было отнять швартов, чтобы судно начало спускаться вниз. Уже с полдюжины плотников возились под килем судна. Зрители с живым любопытством следили за операцией. В этот момент, обогнув береговой выступ, появилась увеселительная яхта. Чтобы войти в порт, яхта должна была пройти перед верфью, где подготовляли спуск «Трабоколо», и, как только она подала сигнал, пришлось, во избежание всяких случайностей, задержать спуск, чтобы снова приняться за дело после прохода яхты в канал. Если бы суда, — одно, стоявшее поперёк, другое, подвигающееся с большой быстротой, — столкнулись, яхта погибла бы.

Читайте также:  Изюм белый полезные свойства

Рабочие перестали стучать молотками. Все взоры были устремлены на грациозное судно, белые паруса которого казались позолоченными в косых лучах Солнца. Скоро яхта очутилась как раз против верфи, где замерла тысячная толпа любопытных. Вдруг раздался крик ужаса: «Трабоколо» закачалось и пришло в движение в тот самый момент. Когда яхта повернулась к нему штирбортом! Оба судна готовы были столкнуться, не было ни времени, ни возможности помешать этому столкновению. «Трабоколо» быстро скользило вниз по наклону… Белый дымок, появившийся вследствие трения, закрутился перед его носом, тогда как корма погрузилась уже в воду бухты.

Вдруг появился человек, схватывает швартов, висящий у передней части «Трабоколо», и старается удержать его, пригнувшись к земле. В одну минуту он наматывает швартов на вбитую в землю железную трубу и, рискуя быть раздавленным, держит с нечеловеческой силой в руках канат в продолжение 10 секунд. Наконец швартов обрывается. Но этих 10 секунд было достаточно: «Трабоколо», погрузившись в воду, только слегка задело яхту и пронеслось вперёд.

Яхта была спасена. Что касается человека, которому никто не успел даже прийти на помощь, — так быстро и неожиданно всё произошло, — то это был Матифу!»

Как бы изумился автор романа, если бы ему сказали, что для совершения подобного подвига не нужно вовсе быть великаном и обладать, как Матифу, «силою тигра». Каждый находчивый человек мог бы сделать то же самое!

Механика учит, что при скольжении каната, навитого на тумбу, сила трения достигает большой величины. Чем больше число оборотов каната, тем трение больше; правило возрастания трения таково, что, с увеличением числа оборотов в прогрессии арифметической, трение растёт в прогрессии геометрической. Поэтому даже слабый ребёнок, держа за свободный конец каната, 3-4 раза навитого на неподвижный вал, может уравновесить огромную силу.

На речных пароходных пристанях подростки останавливают этим приёмом подходящие к пристаням пароходы с сотней пассажиров. Помогает им не феноменальная сила их рук, а трение верёвки о сваю.

Знаменитый математик XVIII века Эйлер установил зависимость силы трения от числа оборотов верёвки вокруг сваи. Для тех, кого не пугает сжатый язык алгебраических выражений, приводим эту поучительную формулу Эйлера:

Здесь F 1 — та сила, против которой направлено наше усилие F 0 . Буквой e обозначено число 2,718… (основание натуральных логарифмов), µ — коэффициент трения между канатом и тумбой. Буквой ? обозначен «угол навивания». Например, если верёвка обвита вокруг трубы один раз, то «угол навивания» ?=2? = =2×3,14=6,28 радиан.

Эта формула выведена великим Эйлером. По этой формуле легко рассчитать, зная коэффициент трения, что если бы Матифу обмотал канат вокруг трубы всего 3 раза, то уменьшил бы натяжение каната в 500 раз! Тут и ребенок мог бы удержать его: даже если судно, съезжая со стапелей, натягивало канат с силой F 1 = 50 кН, то на Матифу пришлось бы всего 100 Н(10кг).

Пусть тело веса Р движется под действием силы Т по шероховатой поверхности С одной стороны, поверхность не позволяет телу падать вниз под действием силы тяжести Р. С другой стороны, поверхность мешает свободному перемещению тела под действием силы Т. Таким образом, сила трения F так же, как и нормальная реакция, вызвана к жизни поверхностью, т. е. сила трения — это тоже реакция. Нормальная реакция и сила трения складываются в полную реакцию R, которая отклонена от нормали на угол ?. Этот угол называется углом трения. С помощью рис. легко вычислить, чему равен тангенс угла трения tg?=F/N=µN/N=µ , т. е. тангенс угла трения численно равен коэффициенту трения.

Теперь представьте себе, что вы вращаете полную реакцию вокруг нормали к поверхности. В этом случае сила R описывает конус, который называется конусом трения. Он интересен тем, что область, ограниченная конусом трения, определяет область равновесия для тела: если сила действует на тело внутри конуса трения, она не сдвинет тело, как бы велика ни была; если сила действует на тело вне конуса трения, она сдвигает тело, как бы мала ни была (рис. 19).

Давайте посмотрим, почему так происходит (Рис. 20).

Если сила Q действует внутри конуса трения, то сдвигающая сила Q 1 = Qsin? . Вычислим силу трения:

Запас прочности F-Q 1 =Q( cos? tg? -sin ? ) = Qsin( ? — ? )/ cos? . Таким образом, запас прочности пропорционален Q, так как sin( ? — ? )/ cos? — постоянная величина. Чем больше сила Q, тем больше удерживающая сила F-Q 1 .

Уметь строить конус трения нужно вот почему.

Однажды в Мюнхене рухнул мост, и виноват в этом был не ураганный ветер, не полк идущих в ногу солдат, а. конус трения.

Этот мост одним своим концом был закреплен при помощи шарнира, а другим — положен на катки (рис. 21). Мост всегда крепят таким образом, чтобы он не покривился при колебаниях температуры. Шарнир был заполнен пастой, предохранявшей его от коррозии. В жаркий летний день паста растопилась, и вязкость ее стала меньше. Характер трения изменился — оно также уменьшилось. Конус трения сузился, и сила давления на опору вышла за пределы конуса.

Равновесие нарушилось, и мост рухнул. Инженерам часто приходится строить конус трения, чтобы определить, будет ли находиться в равновесии данная конструкция или нет. Но с конусом трения имеют дело не одни только инженеры. Каждый из нас ежедневно сталкивается с этим физическим явлением.

Чтобы пробраться к выходу в переполненном автобусе или троллейбусе, приходится извиваться ужом. Делаем мы это бессознательно, не задумываясь, что таким образом мы выходим из конусов трения в местах касания с другими пассажирами.

Катаемся ли мы на коньках, идем ли на работу, переворачиваем ли страницу в книге — всюду мы сталкиваемся с трением и, в частности, с конусом трения.

С трением связанно очень много интересных вещей и событий. Я хочу рассказать вам о некоторых из них. В конце прошлого века английский промышленник Гарвей прислал в Россию образцы новых броневых плит для защиты кораблей. На испытаниях снаряды тяжелых орудий вместо того, чтобы разбивать плиты, сами разбивались о броню, не принося вреда тому, что могло скрываться за ней. Но вот русские попросили повторить испытания. И снаряды начали разбивать броневые плиты (а позже и пробивать в них отверстия рис. 22).

Рис. 22. Снаряд, пробивающий броневые плиты.

Теперь снаряды были снабжены специальными колпачками из мягкой стали. Колпачок расплющивался, плавился и , с одной стороны, мешал снаряду расколоться, а с другой — служил своеобразной смазкой при его прохождении через броневую плиту.

Изобретателем колпачка был русский ученый и моряк адмирал Макаров.

Когда-то чтобы добыть огонь, люди брали острую деревянную палочку, упирали её в деревянный брусок и быстро вращали (рис. 23). При достаточном упорстве через некоторое время в месте трения появлялся дым, начиналось тление и возгорание образовавшихся опилок и подложенного, например, сухого мха. Частые неудачи при извлечении огня трением дерево о дерево объяснялись недостаточной сухостью древесины.

Точно известно, что такой способ применялся австралийцами, а также индейцами Южной Америки. При этом способе добычи огня зачастую один человек сменял другого, но вращение не прекращалось, пока не добивались успеха.

Можно видоизменить немного этот способ, использовав небольшой лук, и обернув тетиву вокруг вращаемой палочки.

Другой способ добывание огня — высекание искр, и тоже сопровождается треним! Можно получать огонь, нанося по твердому камню удары каким-нибудь металлическим предметом, например, ножом. Такое устройство по извлечению огня существовало с древних времен и позднее стало называться «огниво» (рис. 24).

Огниво — это приспособление для получения огня, широко применявшееся до появления спичек. Оно состоит из кресала, «кремня»и трута. Сноп высекаемых при ударе кремня о кресало искр воспламеняет трут.

Кресало (от слова «резать») представляет собой полоску стали с насечкой, необходимой для откалывания от кремня мелких частиц. При этом температура повышается до 900-1100°С, и разогретые частицы воспламеняются. Это похоже на шлифование стального предмета на точильном камне, когда вокруг образуется сноп искр.

Впоследствии кресало превратилось в колесико с насечкой, которое нашло свое применение сначала в огнестрельном оружии, а затем в зажигалке (рис. 25).

Рис. 25. Колесико с насечкой используемое в зажигалке.

А первые спички были изобретены в 1830 году 19-летним французским химиком Шарлем Сориа. Это были фосфорные спички. Эти спички загорались даже от взаимного трения в коробке и при трении о любую твёрдую поверхность, например, подошву сапога. Эти спички не имели запаха, но были вредны для здоровья, так как белый фосфор очень ядовит.

В 1855 году шведский химик Лундстрем начал использовать для производства спичек безвредный красный фосфор. Такие спички легко зажигались о заранее приготовленную поверхность и практически не самовоспламенялись. Первая «шведская спичка» Лундстрема дошедшая практически до наших дней (рис. 26).

Для пьедестала памятника Петру Первому в Санкт-Петербурге была использована монолитная гранитная глыба весом 80 тыс. пудов .

Обнаружена эта глыба была местным крестьянином Вишняковым. Глыбу называли Гром камнем, так как в него однажды ударила молния, отбив большой осколок Доставили ее в Петербург с берега Финского залива из деревни Лахти. Как же в XVIII веке, не имея ни мощных тягачей, ни подъемных кранов, люди могли совершить такое чудо? Около 9 км пропутешествовал Гром-камень по суше, а потом по Неве на плотах был доставлен в Петербург. Это событие было отмечено особой медалью, на которой была вычеканена надпись: «Дерзновению подобно, 1770 год». Вся Европа только и говорила об этой невиданной операции, какой не повторялось со времен перевозки в древний Рим египетских памятников.

Невиданный проект передвижения Гром-камня дал кузнец из казенных мужиков, оставшийся, к сожалению, неизвестным. Он предложил перекатить камень на специально отлитых бронзовых шарах, заключенных в салазки. Салазки представляли собой большие бревна с выдолбленными вдоль них желобами, обитыми внутри медью (рис. 27).

Рис.27. Передвижение Гром-камня.

Гранитную глыбу поместили на помост из нескольких рядов плотно уложенных бревен, под которым находились желоба с шарами. Согнанные из ближайших деревень крестьяне при помощи канатов и воротов двигали камень к берегу. Несколько мужиков должны были все время смазывать шары говяжьим салом и переставлять их вперед. 120 дней путешествовал так по суше Гром-камень.

Доставленный в Петербург и обработанный мастерами-каменотесами, он стал прекрасным пьедесталом памятника Петру (рис. 29).

Американские астронавты члены экипажа «Аполлон-12» Ч. Конрад и А. Бин рассказывали, что по Луне ходить легко, но они часто теряли равновесие, так как даже при легком наклоне вперед можно было упасть. Устойчивость ходьбы человека определяется силой трения между подошвой обуви и почвой. Поскольку сила тяжести на Луне в шесть раз меньше, чем на Земле, то и сила трения тоже уменьшается в шесть раз, а сила мышц такая же, как и на Земле. Это все равно, что на Земле стать в шесть раз сильнее. Ходьба сразу превратится в прыжки, и устойчивость потеряется (рис. 31).

2.10 Трение в жизни растений и животных

В жизни многих растений трение играет положительную роль. Например, лианы, хмель, горох, бобы и другие вьющиеся растения благодаря трению могут цепляться за находящиеся поблизости опоры, удерживаются на них и тянутся к свету (рис. 32). Между опорой и стеблем возникают достаточно большое трение, т.к. стебли многократно обвивают опоры и очень плотно прилегают к ним.

У растений, имеющих корнеплоды, такие, как морковь, свекла, брюква, сила трения о грунт способствует удержанию их в почве. С ростом корнеплода давление окружающей земли на него увеличивается, а это значит, что сила трения тоже возрастает. Поэтому так трудно вытащить из земли большую свеклу, редьку или репу (рис. 33).

Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах. Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, орехи благодаря своей шарообразной форме и малому трению качения перемещаются легко сами.

Организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Тело рыб имеет обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость. Щетинистый покров моржей, тюленей, морских львов помогает им передвигаться по суше и льдинам.

У животных и человека образующие сустав кости не касаются друг друга; они покрыты суставным хрящом, который выполняет роль буфера между костными поверхностями (рис. 34).

А по краям хряща прикрепляется синовиальная оболочка, в которой имеется жидкость, уменьшающая трение между суставными поверхностями. Проблема трения и изнашивания в суставах решена природой на таком уровне, о котором инженеры — трибологи могут пока только мечтать. Ежедневные нагрузки, например, в тазобедренном суставе человека превышают тысячу ньютонов при прыжках, а трение и изнашивание практически отсутствует. В результате безотказная работа в течение всей жизни!

При действии же органов движения у животных и человека трение проявляется как полезная сила.

Чтобы увеличить сцепление с грунтом, стволами деревьев, на конечностях животных имеется целый ряд различных приспособлений: когти, острые края копыт, подковные шипы, тело пресмыкающихся покрыто бугорками и чешуйками.

Действие органов хватания (хватательные органы жуков, клешни рака; передние конечности и хвост некоторых пород обезьян; хобот слона) тоже тесно связано с трением (Рис. 35).

Рис. 35. Органы хватания различных животных.

Ведь предмет или живое существо будет тем прочнее схвачено, чем больше трение между ним и органом хватания. Величина же силы трения находится в прямой зависимости от прижимающей силы.

У многих живых организмов существуют приспособления, благодаря которым трение получается небольшим при движении в одном направлении и резко увеличивается при движении в обратном направлении. Это, например, шерсть и чешуйки, растущие наклонно к поверхности кожи. На этом принципе основано движение дождевого червя (рис. 36).

Щетинки, направленные назад, свободно пропускают тело червя вперед, но тормозят обратное движение. При удлинении тела головная часть продвигается вперед, а хвостовая остается на месте, при сокращении головная часть задерживается, а хвостовая подтягивается к ней.

Как выглядел бы мир без трения?

А представьте себе. что пол в вашей комнате стал ещё более скользким, чем каток; вот в этом случае вы и получите отдалённое представление о ходьбе в мире без трения — она в таком мире почти невозможна. Люди поминутно падали бы и не могли подняться. Ведь только трение (точнее: трение покоя) позволяет нам отталкиваться ногами, шагая вдоль по ровной дороге.

На столе ничего не лежало бы: при малейшем -наклоне всё съезжало бы на пол, скользило и катилось по нему, стараясь добраться до самого низкого места. В самом деле, ведь только сила трения покоя удерживает предметы на слегка наклонном гладком столе и полу и не даёт им съезжать под действием силы тяжести.

Все узлы немедленно развязывались бы; ведь узлы держатся только благодаря трению одних частей верёвки, шнурка или бечёвки о другие.

Все ткани расползались бы по ниткам, а нитки — в мельчайшие волокна.

Но не только ходить в мире без трения было бы невозможно.

Каким образом, например, мог бы шофёр остановить свою машину? Ведь автомобиль тормозят тем, что прижимают к специальным барабанам, вращающимся вместе с колёсами, тормозные колодки (или ленты). Повернуть машину в мире без трения тоже не удалось бы. Вспомните, что в гололедицу автомобиль не только «идёт юзом», но и не слушается руля. Без трения автомобиль не только нельзя остановить или повернуть, его вообще нельзя заставить катиться. Мотор приводит во вращение задние ведущие колёса автомобиля. Но в мире без трения вращающиеся ведущие колёса автомобиля будут «буксовать», как это часто бывает в зимнее время на обледеневшей дороге. Чтобы колёса катились, необходимо трение их о дорогу.

В мире без трения нельзя было бы ничего толком построить или изготовить: все гвозди выпадали бы из стен, — ведь вбитый гвоздь держится только из-за трения о дерево. Все винты, болты, шурупы вывинчивались бы при малейшем сотрясении — они удерживаются только из-за наличия трения покоя.

Нельзя было бы построить самой простой машины. Приводные ремни, бегущие со шкива на шкив и передающие вращение от моторов к станкам и машинам, немедленно соскакивали бы: ведь именно трение заставляет ремень, надетый на ведущий шкив, двигаться вместе с ним.

И без жидкого трения жизнь на Земле была бы затруднительной. Из-за неравномерного нагревания Солнцем различных участков поверхности Земли воздух над ними не бывает одинаково плотным. Более плотный воздух из холодных мест перемещается в места более тёплые, вытесняя оттуда нагретый воздух. Возникает движение воздуха — ветер. Но при наличии внутреннего трения (вязкости) движение воздуха тормозится, ветер рано или поздно стихает. В мире без трения ветры дули бы с невероятной скоростью.

Реки, текущие с гор, не тормозились бы о берега и дно. Вода в них текла бы всё быстрее и быстрее и, с бешеной силой налетая на излучины берегов, размывала и разрушала бы их. Упавшие в воду глыбы (например, при извержении вулканов) вызывали бы волны, которые бушевали бы, не стихая — ведь усмирявшее их раньше внутреннее трение между слоями воды, а также трение о берега и дно исчезли! Огромные волны на морях и океанах, раз образовавшись, никогда не стихали бы.

Картина мира без трения: ползущие без торможения со склонов гор на равнины громадные каменные глыбы, рассыпающиеся песчаные холмы. Всё, что может двигаться, будет скользить и катиться, пока не окажется на самом низком возможном уровне.

Может быть, одним из полезнейших явлений природы, делающим возможным наше существование, является именно трение?

В своей работе я попытался разобраться в причинах трения. Меня поразило насколько разнообразно и порой неожиданно проявляется трение в окружающей нас обстановке. Трение принимает участие, там, где мы о нём даже и не подозреваем. Если бы трение внезапно исчезло из мира, множество обычных явлений протекало бы совершенно иным образом. Никакие тела, будь они величиною с каменную глыбу или малы, как песчинки, никогда не удержатся одно на другом: всё будет скользить и катиться, пока не окажется на одном уровне. Не будь трения, Земля представляла бы шар без неровностей, подобный росинке. К этому можно прибавить, что при отсутствии трения гвозди и винты выскальзывали бы из стен, ни одной вещи нельзя было бы удержать в руках, никакой вихрь никогда бы не прекращался, никакой звук не умолкал бы, а звучал бы бесконечным эхом, неослабно отражаясь, например, от стен комнаты.

Чем больше я читал о трении, тем сложней, казались мне его законы.

Раскрыть все тайны трения оказалось мне не по силам. Но работа, проведённая мной заставила задуматься над многими вопросами.

1. Л.П. Лисовский. «Трение в природе и технике», журн. «Квант».

. Дерягин Б. В. Что такое трение? М.: Изд. АН СССР, 1963.

. Крагельский И. В., Щедров В. С. Развитие науки о трении. Сухое трение. М.: Изд. АН СССР, 1956.

. Фролов, К. В. (ред.) Современная трибология: Итоги и перспективы. ЛКИ, 2008.

. Силин А.А. «Трение и мы» 1987.

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ШАХОВСКАЯ ГИМНАЗИЯ» Реферат по физике Трение: вредное,

источник

Источники:
  • http://pol-vre.ru/p-v/sila-trenija-poleznaja-i-vrednaja-primery.html
  • http://www.syl.ru/article/256195/mod_vred-i-polza-silyi-treniya-trenie-skoljeniya-pokoya-i-kacheniya
  • http://www.myshared.ru/slide/546828/
  • http://infourok.ru/prezentaciya-k-uroku-poleznoe-i-vrednoe-trenie-424306.html
  • http://www.nado5.ru/e-book/sila-treniya-trenie-skolzheniya-trenie-pokoya
  • http://skachat-referaty.ru/trenie-vrednoe-poleznoe-lyubopyitnoe