Меню Рубрики

Явление резонанса полезные и вредные проявления

В нашей жизни происходит много удивительных и порой непонятных явлений. Однако объяснение многих из них может быть достаточно простым, но сразу не бросающимся в глаза. Например, одна из любимейших детских забав – качание на качелях. Казалось бы, что тут сложного – все ясно и понятно. Но задумывались ли вы, почему, если правильно действовать на качели, то размах качаний будет становиться все больше и больше? Все дело в том, что действовать нужно строго в определенные моменты времени и в определенном направлении, иначе результатом действия может быть не раскачивание, а полная остановка качелей. Чтобы этого не произошло, нужно, чтобы частота внешнего воздействия совпадала с частотой колебаний самих качелей, в этом случае размах качания будет увеличиваться. Это явление называется резонансом. Давайте попробуем разобраться, что такое резонанс, где он встречается в нашей жизни и что об этом явлении нужно знать.

С точки зрения физики «резонанс» – это резкое увеличение амплитуды вынужденных колебаний при совпадении собственной частоты колебательной системы с частотой внешней вынуждающей силы. Это только внешнее проявление резонанса. Внутренняя причина заключается в том, что увеличение амплитуды колебаний свидетельствует об увеличении энергии колебательной системы. Это может происходить только в том случае, если физической системе сообщается энергия извне согласно закону сохранения и изменения энергии. Следовательно, внешняя сила должна совершать положительную работу, увеличивая энергию системы. Это возможно только, когда внешняя сила является периодически изменяющейся с частотой, равной собственной частоте колебательной системы. Самый простой вариант – вариант с качелями, который мы уже описали, и который возникает во всех маятниковых системах и устройствах. Но это далеко не единственный случай применения человеком эффекта резонанса.

Резонанс, как и любое другое физическое явление, имеет как положительные, так и отрицательные последствия. Среди положительных можно выделить использование резонанса в музыкальных инструментах. Особенная форма скрипки, виолончели, контрабаса, гитары способствует резонансу стоячих звуковых волн внутри корпуса инструмента, составляющих гармонику, и музыкальный инструмент дарит любителям музыки необыкновенное звучание. Известнейшие мастера музыкальных инструментов, такие как Николо Амати, Антонио Страдивари и Андреа Гварнери, совершенствовали форму, подбирали редкие породы древесины и изготавливали специальный лак, чтобы усилить резонирующий эффект, сохранив при этом мягкость и нежность тембра. Именно поэтому каждый такой инструмент имеет свой особенный, неповторимый звук.

Помимо этого, известен способ резонансного разрушения при дроблении и измельчении горных пород и материалов. Это происходит так. При движении дробимого материала с ускорением силы инерции будут вызывать напряжения и деформации, периодически меняющие свой знак, – так называемые вынужденные колебания. Совпадение соответствующих частот вызовет резонанс, а силы трения и сопротивления воздуха будет сдерживать рост амплитуды колебаний, однако все равно она может достичь величины, значительно превышающей деформации при ускорениях, не меняющих знак. Резонанс сделает дробление и измельчение горных пород и материалов существенно эффективнее. Такую же роль резонанс играет при сверлении отверстий в бетонных стенах при помощи электрической дрели с перфоратором.

Явление резонанса мы также используем в различных устройствах, использующих радиоволны, таких как телевизоры, радиоприемники, мобильные телефоны и так далее. Радио- или телесигнал, транслируемый передающей станцией, имеет очень маленькую амплитуду. Поэтому, чтобы увидеть изображение или услышать звук, необходимо их усилить и, вместе с тем, понизить уровень шума. Это и достигается при помощи явления резонанса. Для этого нужно настроить собственную частоту приемника, в основе представляющего собой электромагнитный колебательный контур, на частоту передающей станции. При совпадении частот наступит резонанс, и амплитуда радио- или телесигнала существенно вырастет, а сопутствующие ему шумы останутся практически без изменений. Это обеспечит достаточно качественную трансляцию.

Один из видов магнитного резонанса, электронный парамагнитный резонанс, открытый в 1944 году русским физиком Е.К. Завойским, применяется при исследовании кристаллической структуры элементов, химии живых клеток, химических связей в веществах и т. д. Электроны в веществах ведут себя как микроскопические магниты. В разных веществах они переориентируются по-разному, если поместить вещество в постоянное внешнее магнитное поле и воздействовать на него радиочастотным полем. Возврат электронов к исходной ориентации сопровождается радиочастотным сигналом, который несет информацию о свойствах электронов и их окружении. Этот метод представляет собой один из видов спектроскопии.

Несмотря на все преимущества, которые можно получить при помощи резонанса, не следует забывать и об опасности, которую он способен принести. Землетрясения или сейсмические волны, а также работа сильно вибрирующих технических устройств могут вызвать разрушения части зданий или даже зданий целиком. Кроме того, землетрясения могут привести к образованию огромных резонансных волн – цунами с очень большой разрушительной силой.

Также резонанс может стать причиной разрушения мостов. Существует версия, что один из деревянных мостов Санкт-Петербурга (сейчас он каменный) действительно был разрушен воинским соединением. Как сообщали газеты того времени, подразделение двигалось на лошадях, которых пришлось впоследствии извлекать из воды. Естественно, что лошади гвардейцев двигались строем, а не как попало. Еще один мост – Такомский – висячий мост через пролив Такома-Нэрроуз в США был разрушен 7 ноября 1940 года. Причиной обрушения центрального пролета стал ветер со скоростью около 65 км/ч.

В наше время резонансные колебания, вызванные ветром, чуть не стали причиной обрушения волгоградского моста, теперь неофициально называемого «Танцующим мостом». 20 мая 2010 года ветер и волны раскачали его до такой степени, что его пришлось закрыть. При этом был слышен оглушающий скрежет многотонных металлических конструкций. Дорожное покрытие моста через Волгу в течение часа было похоже на развивающееся на ветру полотнище. Бетонные волны, по словам очевидцев, были высотой около метра. Когда мост «затанцевал», по нему ехало несколько десятков автомашин. К счастью, мост устоял, и никто не пострадал.

Таким образом, резонанс – это очень эффективный инструмент для решения многих практических задач, но и одновременно может быть причиной серьёзных разрушений, вреда здоровью и других негативных последствий.

Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы

источник

Прежде чем приступить к знакомству с явлениями резонанса, следует изучить физические термины, связанные с ним. Их не так много, поэтому запомнить и понять их смысл будет несложно. Итак, обо всем по порядку.

Представьте обычный двор, где на качелях сидит ребенок и машет ножками, чтобы раскачаться. В момент, когда ему удается раскачать качели и они достигают равномерного движения из одной стороны в другую, можно подсчитать амплитуду и частоту движения.

Амплитуда — это наибольшая длина отклонения от точки, где тело находилось в положении равновесия. Если брать наш пример качелей, то амплитудой можно считать наивысшую точку, до которой раскачался ребенок.

А частота — это количество колебаний или колебательных движений в единицу времени. Измеряется частота в Герцах (1 Гц = 1 колебание в секунду). Возвратимся к нашим качелям: если ребенок проходит за 1 секунду только половину всей длины качания, то его частота будет равна 0,5 Гц.

Мы уже выяснили, что частота характеризует число колебаний предмета в одну секунду. Представьте теперь, что слабо качающемуся ребенку взрослый человек помогает раскачаться, раз за разом подталкивая качели. При этом данные толчки также имеют свою частоту, которая будет усиливать либо уменьшать амплитуду качания системы «качели-ребенок».

Допустим, взрослый толкает качели в то время, когда они движутся навстречу к нему, в таком случае частота не будет увеличивать амлитуду движения подвесных качелей. То есть сторонняя сила (в данном случае толчки) не будет способствовать усиления колебания системы.

В случае если частота, с которой взрослый раскачивает ребенка, будет численно равна самой частоте колебания качелей, может возникнуть являение резонанса. Другими словами, пример резонанса — это совпадение частоты самой системы с частотой вынужденных колебаний. Логично представить, что частота вынужденных колебаний и резонанс взаимосвязаны.

Важно понимать, что примеры проявления резонанса встречаются практически во всех сферах физики, начиная от звуковых волн и заканчивая электричеством. Смысл резонанса заключается в том, что когда частота вынуждающей силы равна собственной частоте системы, то в этот момент амплитуда колебаний достигает наивысшего значения.

Следующий пример резонанса даст понимание сути. Допустим, вы шагаете по тонкой доске, перекинутой через речку. Когда частота ваших шагов совпадет с частотой или периодом всей системы (доска-человек), то доска начинает сильно колебаться (гнуться вниз и вверх). Если вы продолжите двигаться такими же шагами, то резонанс вызовет сильную амплитуду колебания доски, которая выходит за пределы допустимого значения системы и это в конечном счете приведет к неминуемой поломке мостика.

Существуют также те сферы физики, где можно использовать такое явление, как полезный резонанс. Примеры могут удивить вас, ведь обычно мы используем его интуитивно, даже не догадываясь о научной стороне вопроса. Так, например, мы используем резонанс, когда пытаемся вытащить машину из ямы. Вспомните, ведь легче всего достичь результат только тогда, когда толкаешь машину в момент ее движения вперед. Этот пример резонанса усиливает амплитуду движения, тем самым помогая вытащить машину.

Сложно сказать, какой резонанс в нашей жизни встречается больше: хороший или же наносящий нам вред. Истории известно немалое количество ужасающих последствий явления резонанса. Вот самые известные события, на которых можно наблюдать пример резонанса.

  1. Во Франции, в городе Анжера, в 1750 году отряд солдат шел в ногу через цепной мост. Когда частота их шагов совпала с частотой свободных колебаний моста, размахи колебаний (амплитуда) резко увеличились. Наступил резонанс, и цепи оборвались, а мост обрушился в реку.
  2. Бывали случаи, когда в деревнях дом был разрушен из-за проезжающего по главной дороге грузового автомобиля.

Как видите, резонанс может иметь весьма опасные последствия, вот почему инженерам следует тщательно изучать свойства строительных объектов и правильно вычислять их частоты колебаний.

Резонанс не ограничивается только плачевными последствиями. При внимательном изучении окружающего мира можно наблюдать множество хороших и выгодных для человека результатов резонанса. Вот один яркий пример резонанса, позвляющий получать людям эстетическое удовольствие.

Устройсто многих музыкальных инструментов работает по принципу резонанса. Возьмем скрипку: корпус и струна образуют единую колебательную систему, внутри которой имеется штифт. Именно через него передаются частоты колебаний из верхней деки в нижнюю. Когда лютьер водит смычком по струне, то последняя, подобно стреле, побеждает своей силой упругости трение канифольной поверхности и летит в обратную сторону (начинает движение в противоположную область). Возникает резонанс, который передается в корпус. А внутри его есть специальные отверстия — эфы, сквозь которые резонанс выводится наружу. Именно таким образом он контролируется во многих струнных инструментах (гитара, арфа, виолончель и др).

источник

Как на звук и световые волны влияет принцип резонанса? Что такое вибрации и резонансные частоты объектов? Какие повседневные примеры резонанса можно встретить в жизни? Как разбить бокал с помощью голоса? Если присмотреться, то можно увидеть примеры резонанса повсюду. Вот только некоторые из них несут пользу, а другие – вред.

Вы когда-нибудь задумывались над тем, как люди создают прекрасную музыку с помощью обыкновенных бокалов? По мере повышения воздействия на стекло звуковыми волнами оно может даже разбиться. Световые волны также взаимодействуют особыми способами с объектами вокруг себя. Поведение звуковых и световых волн объясняет, почему люди слышат звуки музыкальных инструментов и различают цвета. Изменения волновой амплитуды вызваны важным принципом, который называется резонансом. Примерами влияния на передачу звука и света являются вибрации.

Звуковые волны происходят от механических колебаний в твердых телах, жидкостях и газах. Световые волны исходят из вибрации заряженных частиц. Объекты, заряженные частицы и механические системы обычно имеют определенную частоту, на которой они склонны вибрировать. Это называется их резонансной частотой или их собственной частотой. Некоторые объекты имеют две или более резонансных частот. Пример резонанса: когда вы едете по ухабистой дороге, и ваш автомобиль начинает прыгать вверх и вниз – это пример колебания вашей машины на своей резонансной частоте, вернее резонансная частота амортизаторов. Вы можете заметить, что когда вы едете в автобусе, частота отскока немного медленнее. Это потому, что амортизаторы шины имеют более низкую резонансную частоту.

Когда звуковая или световая волна ударяет по объекту, она уже вибрирует на определенной частоте. Если эта частота будет соответствовать резонансной частоте объекта, то это приведет к тому, что вы получите резонанс. Он возникает, когда амплитуда колебаний объекта увеличивается за счет соответствующих колебаний другого объекта. Эту связь трудно представить без примера.

Взять, к примеру, типичную световую волну (это поток белого света, который исходит от солнца) и направить ее на темный объект, пусть это будет черная змея. Молекулы в коже пресмыкающегося имеют набор резонансных частот. То есть электроны в атомах стремятся вибрировать на определенных частотах. Свет, спускающийся с солнца, – белый свет, который имеет многосоставную частоту.

Сюда входят красный и зеленый, синий и желтый, оранжевый и фиолетовый. Каждая из этих частот поражает кожу змеи. И каждая частота приводит к вибрации другого электрона. Желтая частота резонирует с электронами, резонансная частота которых желтая. Синяя частота резонирует с электронами, резонансная частота которых синяя. Таким образом, кожа змеи в целом резонирует с солнечным светом. Змея кажется черной, потому что ее кожа поглощает все частоты солнечного света.

Когда световые волны резонируют с объектом, они заставляют электроны вибрировать с большими амплитудами. Световая энергия поглощается объектом, и человеческому глазу не заметно, что свет возвращается обратно. Объект выглядит черным. Что делать, если объект не поглощает солнечный свет? Что если ни один из его электронов не резонирует со световыми частотами? Если резонанс не возникает, то вы получите передачу, пропускание световых волн через объект. Стекло кажется прозрачным, потому что оно не поглощает солнечный свет.

Свет все еще вызывает вибрации электронов. Но поскольку он не соответствует резонансным частотам электронов, колебания очень малы и проходят от атома к атому через весь объект. Объект без резонанса будет иметь нулевое поглощение и 100 % передачу, например стекло или вода.

Резонанс для звука работает так же, как и для света. Когда один объект вибрирует на частоте второго объекта, тогда первый заставляет второй вибрировать с высокой амплитудой. Так возникает акустический резонанс. Примером служит игра на любом музыкальном инструменте. Акустический резонанс отвечает за музыку, создаваемую трубой, флейтой, тромбоном и многими другими инструментами. Как работает это удивительное явление? Можно привести пример резонанса, который имеет положительный эффект.

Пройдя в собор, где играет органная музыка, можно заметить, что вся стена заполнена огромными трубами всех размеров. Некоторые из них очень короткие, а другие доходят до потолка. Для чего нужны все трубы? Когда начинает играть прекрасная музыка, можно понять, что звук исходит от труб, он очень громкий и, кажется, заполняет весь собор. Как такие трубы могут звучать так громко? Во всем виноват акустический резонанс, и он не является единственным инструментом, который использует это удивительное явление.

Чтобы понять, что происходит, вам сначала нужно немного узнать о том, как звук проходит по воздуху. Звуковые волны создаются, когда что-то вызывает вибрацию молекул воздуха. Затем эта вибрация перемещается, как волна, наружу во всех направлениях. Когда волна проходит по воздуху, есть области, где молекулы сжимаются ближе друг к другу, и области, где молекулы вытягиваются дальше друг от друга. Расстояние между последовательными сжатиями или расширениями известно как длина волны. Частота измеряется в единицах Герца (Гц), а один Герц соответствует одной скорости сжатия волны в секунду.

Люди могут обнаруживать звуковые волны с частотами от 20 до 20 000 Гц! Однако они не все звучат одинаково. Некоторые звуки высокие и скрипучие, в то время как другие низкие и глубокие. То, что вы на самом деле слышите, – это разница в частоте. Итак, как частота относится к длине волны? Скорость звука немного меняется в зависимости от температуры воздуха, но обычно она составляет около 343 м/с. Поскольку все звуковые волны движутся с одинаковой скоростью, частота будет уменьшаться по мере увеличения длины волны и возрастать при уменьшении длины волны.

Читайте также:  Чем полезна медицинская пиявка

Часто люди принимают мостостроение и безопасность как должное. Однако иногда происходят катастрофы, заставляющие поменять свою точку зрения. 1 июля 1940 года в Вашингтоне был открыт мост Такома-Нэрроуз. Это был подвесной мост, третий по величине в мире для своего времени. Во время строительства мост получил прозвище «Галопирование Герти» из-за того, как он качался и сгибался на ветру. Это волнообразное колебание в конце концов привело к его крушению. Мост рухнул 7 ноября 1940 года во время бури, всего через четыре месяца его эксплуатации. Прежде чем узнавать о резонансной частоте и о том, что это связано с катастрофой моста Такома-Нэрроуз, сначала нужно понять что-то, называемое гармоническим движением.

Когда у вас есть объект, периодически колеблющийся назад и вперед, мы говорим, что он испытывает гармоническое движение. Один прекрасный пример проявления резонанса, испытывающего гармоническое движение, – свободная подвесная пружина с прикрепленной к ней массой. Масса заставляет пружину растягиваться вниз, пока в конце концов пружина не сжимается назад, чтобы вернуться к своей первоначальной форме. Этот процесс продолжает повторяться, и мы говорим, что пружина находится в гармоническом движении. Если вы посмотрите видео с моста Такома-Нэрроуз, то увидите, что он колебался, прежде чем рухнул. Он проходил гармоническое движение, как пружина с прикрепленной к ней массой.

Если вы один раз толкнете своего друга на качелях, они несколько раз будут совершать колебательные движения и через некоторое время остановятся. Эта частота, когда колебание самопроизвольно колеблется, называется собственной частотой. Если вы даете толчок каждый раз, когда ваш друг возвращается к вам, он будет качаться все выше и выше. Вы нажимаете с частотой, аналогичной собственной частоте, и амплитуда колебаний возрастает. Такое поведение называется резонансом.

Несомненно, это один из примеров полезного резонанса. Среди прочих нагревание пищи в микроволновой печи, антенна на радиоприемнике, принимающем радиосигнал, игра на флейте.

На самом деле, есть также множество плохих примеров. Разрушение стекла высоким тональным звуком, разрушение моста легким ветерком, обрушение зданий при землетрясениях – все это примеры резонанса в жизни, которые не просто вредные, но и опасные, в зависимости от силы воздействия.

Многие наверняка слышали о том, что винный бокал можно разбить голосом оперной певицы. Если вы слегка ударите бокал ложкой, он будет «звонить», как колокол, на своей резонансной частоте. Если на стекло оказывается звуковое давление на определенной частоте, оно начинает вибрировать. По мере того как стимул продолжается, вибрация в бокале накапливается до тех пор, пока он не разрушится, когда будут превышены механические пределы.

Примеры полезного и вредного резонанса повсюду. Микроволны окружают все вокруг, от микроволновой печки, которая разогревает пищу без применения внешнего тепла, до вибраций в земной коре, приводящих к разрушительным землетрясениям.

источник

Определение понятия резонанса (отклика) в физике возлагается на специальных техников, которые обладают графиками статистики, часто сталкивающихся с этим явлением. На сегодняшний день резонанс представляет собой частотно-избирательный отклик, где вибрационная система или резкое возрастание внешней силы вынуждает другую систему осциллировать с большей амплитудой на определенных частотах.

Это явление наблюдается, когда система способна хранить и легко переносить энергию между двумя или более разными режимами хранения, такими как кинетическая и потенциальная энергия. Однако есть некоторые потери от цикла к циклу, называемые затуханием. Когда затухание незначительно, резонансная частота приблизительно равна собственной частоте системы, которая представляет собой частоту невынужденных колебаний.

Эти явления происходят со всеми типами колебаний или волн: механические, акустические, электромагнитные, ядерные магнитные (ЯМР), электронные спиновые (ЭПР) и резонанс квантовых волновых функций. Такие системы могут использоваться для генерации вибраций определенной частоты (например, музыкальных инструментов).

Термин «резонанс» (от латинской resonantia, «эхо») происходит от поля акустики, особенно наблюдаемого в музыкальных инструментах, например, когда струны начинают вибрировать и воспроизводить звук без прямого воздействия игроком.

Толчок человека на качелях является распространенным примером этого явления. Загруженные качели, маятник имеют собственную частоту колебаний и резонансную частоту, которая сопротивляется толканию быстрее или медленнее.

Примером является колебание снарядов на детской площадке, которое действует как маятник. Нажатие человека во время качания с естественным интервалом колебания приводит к тому, что качели идут все выше и выше (максимальная амплитуда), в то время как попытки делать качание с более быстрым или медленным темпом создают меньшие дуги. Это связано с тем, что энергия, поглощаемая колебаниями, увеличивается, когда толчки соответствуют естественным колебаниям.

Отклик широко встречается в природе и используется во многих искусственных устройствах. Это механизм, посредством которого генерируются практически все синусоидальные волны и вибрации. Многие звуки, которые мы слышим, например, когда ударяются жесткие предметы из металла, стекла или дерева, вызваны короткими колебаниями в объекте. Легкое и другое коротковолновое электромагнитное излучение создается резонансом в атомном масштабе, таким как электроны в атомах. Другие условия, в которых могут применяться полезные свойства этого явления:

  • Механизмы хронометража современных часов, колесо баланса в механических часах и кварцевый кристалл в часах.
  • Приливной отклик залива Фанди.
  • Акустические резонансы музыкальных инструментов и человеческого голосового тракта.
  • Разрушение хрустального бокала под воздействием музыкального правого тона.
  • Фрикционные идиофоны, такие как изготовление стеклянного предмета (стекла, бутылки, вазы), вибрируют, при потирании вокруг его края кончиком пальца.
  • Электрический отклик настроенных схем в радиостанциях и телевизорах, которые позволяют избирательно принимать радиочастоты.
  • Создание когерентного света оптическим резонансом в лазерной полости.
  • Орбитальный отклик, примером которого являются некоторые луны газовых гигантов Солнечной системы.

Материальные резонансы в атомном масштабе являются основой нескольких спектроскопических методов, которые используются в физике конденсированных сред, например:

  • Электронный спиновой.
  • Эффект Мёссбауэра.
  • Ядерный магнитный.

В описании резонанса Г. Галилей как раз обратил внимание на самое существенное — на способность механической колебательной системы (тяжелого маятника) накапливать энергию, которая подводится от внешнего источника с определенной частотой. Проявления резонанса имеют определенные особенности в различных системах и поэтому выделяют разные его типы.

Механический резонанс — это тенденция механической системы поглощать больше энергии, когда частота ее колебаний соответствует собственной частоте вибрации системы. Это может привести к сильным колебаниям движения и даже катастрофическому провалу в недостроенных конструкциях, включая мосты, здания, поезда и самолеты. При проектировании объектов инженеры должны обеспечить безопасность, чтобы механические резонансные частоты составных частей не соответствовали колебательным частотам двигателей или других осциллирующих частей во избежание явлений, известных как резонансное бедствие.

Возникает в электрической цепи на определенной резонансной частоте, когда импеданс схемы минимален в последовательной цепи или максимум в параллельном контуре. Резонанс в схемах используется для передачи и приема беспроводной связи, такой как телевидение, сотовая или радиосвязь.

Оптическая полость, также называемая оптическим резонатором, представляет собой особое расположение зеркал, которое образует резонатор стоячей волны для световых волн. Оптические полости являются основным компонентом лазеров, окружающих среду усиления и обеспечивающих обратную связь лазерного излучения. Они также используются в оптических параметрических генераторах и некоторых интерферометрах.

Свет, ограниченный в полости, многократно воспроизводит стоячие волны для определенных резонансных частот. Полученные паттерны стоячей волны называются «режимами». Продольные моды отличаются только частотой, в то время как поперечные различаются для разных частот и имеют разные рисунки интенсивности поперек сечения пучка. Кольцевые резонаторы и шепчущие галереи являются примерами оптических резонаторов, которые не образуют стоячих волн.

В космической механике возникает орбитальный отклик, когда два орбитальных тела оказывают регулярное, периодическое гравитационное влияние друг на друга. Обычно это происходит из-за того, что их орбитальные периоды связаны отношением двух небольших целых чисел. Орбитальные резонансы значительно усиливают взаимное гравитационное влияние тел. В большинстве случаев это приводит к нестабильному взаимодействию, в котором тела обмениваются импульсом и смещением, пока резонанс больше не существует.

При некоторых обстоятельствах резонансная система может быть устойчивой и самокорректирующей, чтобы тела оставались в резонансе. Примерами является резонанс 1: 2: 4 лун Юпитера Ганимед, Европа и Ио и резонанс 2: 3 между Плутоном и Нептуном. Неустойчивые резонансы с внутренними лунами Сатурна порождают щели в кольцах Сатурна. Частный случай резонанса 1: 1 (между телами с аналогичными орбитальными радиусами) заставляет крупные тела Солнечной системы очищать окрестности вокруг своих орбит, выталкивая почти все остальное вокруг них.

Ядерный магнитный резонанс (ЯМР) — это имя, определяемое физическим резонансным явлением, связанным с наблюдением конкретных квантовомеханических магнитных свойств атомного ядра, если присутствует внешнее магнитное поле. Многие научные методы используют ЯМР-феномены для изучения молекулярной физики, кристаллов и некристаллических материалов. ЯМР также обычно используется в современных медицинских методах визуализации, таких как магнитно-резонансная томография (МРТ).

Для того чтобы сделать некий вывод о плюсах и минусах резонанса, необходимо рассмотреть, в каких случаях он может проявляться наиболее активно и заметно для человеческой деятельности.

Явление отклика широко используется в науке и технике. Например, работа многих радиотехнических схем и устройств основывается на этом явлении.

  • Двухтактный двигатель. Глушитель двухтактного двигателя имеет особую форму, рассчитанную на создание резонансного явления. Оно улучшает работу двигателя засчет снижения потребления и загрязнения. Этот резонанс частично уменьшает несгоревшие газы и увеличивает сжатие в цилиндре.
  • Музыкальные инструменты. В случае струнных и духовых инструментов звуковое производство происходит в основном при возбуждении колебательной системы (струны, колонны воздуха) до возникновения явления резонанса.
  • Радиоприемники. Каждая радиостанция излучает электромагнитную волну с четко определенной частотой. Для его захвата цепь RLC принудительно подвергается вибрации с помощью антенны, которая захватывает все электромагнитные волны, достигающие ее. Для прослушивания одной станции собственная частота RLC-схемы должна быть настроена на частоту требуемого передатчика, изменяя емкость переменного конденсатора (операция выполняется при нажатии кнопки поиска станции). Все системы радиосвязи, будь то передатчики или приемники, используют резонаторы для «фильтрации» частот сигналов, которые они обрабатывают.
  • Магнитно-резонансная томография (МРТ). В 1946 году два американца Феликс Блох и Эдвард Миллс Перселл самостоятельно обнаружили явление ядерного магнитного резонанса, также называемое ЯМР, которое принесло им Нобелевскую премию по физике.

Однако не всегда явление полезно. Часто можно встретить ссылки на случаи, когда навесные мосты ломались при прохождении по ним солдат «в ногу». При этом ссылаются на проявление резонансного эффекта воздействия резонанса, и борьба с ним приобретает масштабный характер.

  • Автотранспорт. Автомобилисты часто раздражаются шумом, который появляется при определенной скорости движения транспортного средства или в результате работы двигателя. Некоторые слабо закругленные части корпуса вступают в резонанс и излучают звуковые колебания. Сам автомобиль с его системой подвески представляет собой осциллятор, оснащенный эффективными амортизаторами, которые препятствуют возникновению острого резонанса.
  • Мосты. Мост может выполнять вертикальные и поперечные колебания. Каждый из этих типов колебаний имеет свой период. Если стропы подвешены, система имеет очень разную резонансную частоту.
  • Здания. Высокие здания чувствительны к землетрясениям. Некоторые пассивные устройства позволяют защитить их: они являются осцилляторами, чья собственная частота близка к частоте самого здания. Таким образом, энергия полностью поглощается маятником, препятствующим разрушению здания.

Но несмотря на иногда губительные последствия эффекта отклика с ним вполне можно и нужно бороться. Чтобы избежать нежелательного возникновения этого явления, обычно используют два способа одновременного применения резонанса и борьбы с ним:

источник

Мы часто слышим слово резонанс: «общественный резонанс», «событие, вызвавшее резонанс», «резонансная частота». Вполне привычные и обыденные фразы. Но можете ли вы точно сказать, что такое резонанс?

Если ответ отскочил у вас от зубов, мы вами по-настоящему гордимся! Ну а если тема «резонанс в физике» вызывает вопросы, то советуем прочесть нашу статью, где мы подробно, понятно и кратко расскажем о таком явлении как резонанс.

Прежде, чем говорить о резонансе, нужно разобраться с тем, что такое колебания и их частота.

Колебания – процесс изменения состояний системы, повторяющийся во времени и происходящий вокруг точки равновесия.

Простейший пример колебаний — катание на качелях. Мы приводим его не зря, этот пример еще пригодится нам для понимания сути явления резонанса в дальнейшем.

Резонанс может наступить только там, где есть колебания. И не важно, какие это колебания – колебания электрического напряжения, звуковые колебания, или просто механические колебания.

На рисунке ниже опишем, какими могут быть колебания.

Виды колебаний

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Колебания характеризуются амплитудой и частотой. Для уже упомянутых выше качелей амплитуда колебаний — это максимальная высота, на которую взлетают качели. Также мы можем раскачивать качели медленно или быстро. В зависимости от этого будет меняться частота колебаний.

Частота колебаний (измеряется в Герцах) — это количество колебаний в единицу времени. 1 Герц — это одно колебание за одну секунду.

Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.

Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.

Резонанс на качелях

Резонанс в физике – это частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы.

Суть явления резонанса в физике состоит в том, что амплитуда колебаний резко возрастает при совпадении частоты воздействия на систему с собственной частотой системы.

Известны случаи, когда мост, по которому маршировали солдаты, входил в резонанс от строевого шага, раскачивался и разрушался. Кстати, именно поэтому сейчас при переходе через мост солдатам положено идти вольным шагом, а не в ногу.

Египетский мост в Санкт-Петербурге, разрушившийся из-за резонанса.

Явление резонанса наблюдается в самых разных физических процессах. Например, звуковой резонанс. Возьмём гитару. Само по себе звучание струн гитары будет тихим и почти неслышным. Однако струны неспроста устанавливают над корпусом – резонатором. Попав внутрь корпуса, звук от колебаний струны усиливается, а тот, кто держит гитару, может почувствовать, как она начинает слегка «трястись», вибрировать от ударов по струнам. Иными словами, резонировать.

Еще один пример наблюдения резонанса, с которым мы сталкиваемся — круги на воде. Если кинуть в воду два камня, попутные волны от них встретятся и увеличатся.

Действие микроволновки также основано на резонансе. В данном случае резонанс происходит в молекулах воды, которые поглощают излучение СВЧ (2,450 ГГц). Как следствие, молекулы входят в резонанс, колеблются сильнее, а температура пищи повышается.

Резонатор гитары

Резонанс может быть как полезным, так и приносящим вред явлением. А прочтение статьи, как и помощь нашего студенческого сервиса в трудных учебных ситуациях, принесет вам только пользу. Если в ходе выполнения курсовой вам понадобится разобраться с физикой магнитного резонанса, можете смело обращаться в нашу компанию за быстрой и квалифицированной помощью.

Напоследок предлагаем посмотреть видео на тему «резонанс» и убедиться в том, что наука может быть увлекательной и интересной. Наш сервис поможет с любой работой: от реферата «Сеть интернет и киберпреступность» до курсовой по физике колебаний или эссе по литературе.

источник

Резонансом в электрическом колебательном контуре называется явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

Читайте также:  Чем сперма полезна для организма

Магнитно-резонансная томография, или ее сокращенное название МРТ, считается одним из самых надежных методов лучевой диагностики. Очевидным плюсом использования такого способа проверить состояние организма является то, что оно не является ионизирующим излучением и дает довольно точные результаты при исследовании мышечной и суставной системы организма, помогает с высокой вероятностью диагностировать различные заболевания позвоночника и центральной нервной системы.

Сам процесс обследования довольно прост и абсолютно безболезненный — все, что вы услышите, лишь сильный шум, но от него хорошо защищают наушники, которые выдаст вам перед процедурой врач. Возможны только два вида неудобств, которых не получится избежать. В первую очередь это касается тех людей, которые боятся замкнутых пространств — диагностируемый пациент ложится на горизонтальную лежанку и автоматические реле передвигают его внутрь узкой трубы с сильным магнитным полем, где он находится примерно в течение 20 минут. Во время диагностики не следует шевелиться, чтобы результаты получились как можно точнее. Второе неудобство, которое вызывает резонансная томография при исследовании малого таза, это необходимость наполненности мочевого пузыря.

Если ваши близкие желают присутствовать при диагностировании, они обязаны подписать информационный документ, согласно которому они ознакомлены с правилами поведения в диагностическом кабинете и не имеют никаких противопоказаний для нахождения рядом с сильным магнитным полем. Одной из причин невозможности нахождения в помещении управления МРТ является наличие в организме посторонних металлических компонентов.

Использование резонанса в радиосвязи

Явление электрического резонанса широко используется при осуществлении радиосвязи. Радиоволны от различных передающих станций возбуждают в антенне радиоприемника переменные токи различных частот, так как каждая передающая радиостанция работает на своей частоте. С антенной индуктивно связан колебательный контур (рис. 4.20). Вследствие электромагнитной индукции в контурной катушке возникают переменные ЭДС соответствующих частот и вынужденные колебания силы тока тех же частот. Но только при резонансе колебания силы тока в контуре и напряжения в нем будут значительными, т. е. из колебаний различных частот, возбуждаемых в антенне, контур выделяет только те, частота которых равна его собственной частоте. Настройка контура на нужную частоту обычно осуществляется путем изменения емкости конденсатора. В этом обычно состоит настройка радиоприемника на определенную радиостанцию. Необходимость учета возможности резонанса в электрической цепи. В некоторых случаях резонанс в электрической цепи может принести большой вред. Если цепь не рассчитана на работу в условиях резонанса, то его возникновение может привести к аварии.

Чрезмерно большие токи могут перегреть провода. Большие напряжения приводят к пробою изоляции.

Такого рода аварии нередко случались еще сравнительно недавно, когда плохо представляли себе законы электрических колебаний и не умели правильно рассчитывать электрические цепи.

При вынужденных электромагнитных колебаниях возможен резонанс — резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебаний. На явлении резонанса основана вся радиосвязь.

источник

Резонанс является одним из интереснейших физических явлений. И чем глубже становятся наши познания об окружающем нас мире, тем явственнее прослеживается роль этого явления, в различных сферах нашей жизни — в музыке, медицине, радиотехнике и даже на детской площадке.

Каков же смысл этого понятия, условия его возникновения и проявление?

Вспомним простое и приятное развлечение — раскачивание на подвесных качелях.

Прикладывая в нужный момент совсем незначительное усилие, ребёнок может раскачивать взрослого. Но для этого частота воздействия внешней силы должна совпасть с собственной частотой раскачивания качелей. Только в этом случае амплитуда их колебаний заметно вырастет.

Прежде всего, разберемся в понятиях — собственные и вынужденные колебания. Собственные — присущи всем телам — звёздам, струнам, пружинам, ядрам, газам, жидкостям… Обычно они зависят от коэффициента упругости, массы тела и других его параметров. Такие колебания возникают под воздействием первичного толчка, осуществляемой внешней силой. Так, чтобы привести в колебания груз, подвешенный на пружине, достаточно оттянуть его на некоторое расстояние. Возникшие при этом собственные колебания будут затухающими, поскольку энергия колебаний затрачивается на преодоление сопротивления самой колебательной системы и окружающей среды.

Вынужденные колебания возникают при воздействии на тело сторонней (внешней) силы с определенной частотой. Эту стороннюю силу ещё называют вынуждающей силой. Очень важно, чтобы эта внешняя сила действовала на тело в нужный момент и в нужном месте. Именно она восполняет потери энергии и увеличивает её при собственных колебаниях тела.

Очень ярким примером проявления резонанса является несколько случаев обрушения мостов, когда по ним строевым шагом проходила рота солдат.

Чеканный шаг солдатских сапог совпал с собственной частотой колебаний моста. Он стал колебаться с такой амплитудой, на которую его прочность не была рассчитана и… развалился. Тогда и родилась новая воинская команда «…не в ногу». Она звучит, когда пешая или конная рота солдат проходит по мосту.

Если вам случалось путешествовать на поезде, то самые внимательные из вас обратили внимание на заметные покачивания вагонов, когда его колеса попадают на стыки рельс. Это так вагон откликается, т. е. резонирует с колебаниями, возникающими при преодолении этих зазоров.

Корабельные приборы снабжают массивными подставками или подвешивают на мягких пружинах, чтобы избежать резонанса этих корабельных деталей с колебаниями корабельного корпуса. При запуске корабельных двигателей судно так может войти в резонанс с их работой, что это грозит его прочности.

Приведенных примеров достаточно, чтобы убедиться в необходимости учитывать резонанс. Но мы иногда и используем механический резонанс, не замечая этого. Выталкивая машину, застрявшую в дорожной грязи, водитель и его добровольные помощники вначале раскачивают её, а затем дружно толкают вперёд по направлению движения.

Раскачивая тяжелый колокол, звонари тоже неосознанно используют это явление.

Они ритмично в такт с собственными колебаниями языка колокола, дергают за прикрепленный к нему шнур, всё увеличивая амплитуду колебаний.

Существуют приборы, измеряющие частоту электрического тока. Их действие основано на использовании резонанса.

На страницах нашего сайта мы познакомили вас с важнейшими сведениями о звуке. Продолжим наш разговор, дополнив его примерами проявления акустического или звукового резонанса.

Для чего у музыкальных инструментов, особенно у гитары и скрипки такой красивый корпус? Неужели лишь для того, чтобы красиво выглядеть? Оказывается, нет. Он нужен для правильного звучания, всей издаваемой инструментом звуковой палитры. Звук, издаваемый самой гитарной струной достаточно тихий. Чтобы его усилить струны, располагают поверх корпуса, имеющего определенную форму и размеры. Звук, попадая внутрь гитары, резонирует с различными частями корпуса и усиливается.

Сила и чистота звука зависит от качества дерева, и даже от лака, которым покрыт инструмент.

Имеются резонаторы и в нашем голосовом аппарате. Их роль выполняют самые различные воздушные полости, окружающие голосовые связки. Они-то усиливают звук, формируют его тембр, усиливая именно те колебания, частота которых близка к их собственной. Умение использовать резонаторы своего голосового аппарата — это одна из сторон таланта певца. Им в совершенстве владел Ф.И. Шаляпин.

Рассказывают, что когда этот великий артист пел во всю мощь, гасли свечи, тряслись люстры и трескались гранёные стаканы.

Т.е. явление звукового резонанса играет громадную роль в восхитительном мире звуков.

Не миновало это явление и электрические цепи. Если частота изменения внешнего напряжения совпадет с частой собственных колебаний цепи, то может возникнуть электрический резонанс. Как всегда он проявляется в резком возрастании и силы тока и напряжения в цепи. Это чревато коротким замыкание и выходом из строя приборов, включённых в цепь.

Однако именно резонанс позволяет нам настроиться на частоту определенной радиостанции. Обычно на антенну поступает множество частот от различных радиостанций. Вращая ручку настройки, мы меняем частоту приёмного контура радиоприёмника.

Когда одна из пришедших на антенну частот совпадет с этой частотой, тогда мы и услышим эту радиостанцию.

Между поверхностью Земли и ее ионосферой существует слой, в котором очень хорошо распространяются электромагнитные волны. Этот небесный коридор называют волноводом. Рождающиеся здесь волны могут несколько раз огибать Землю. Но откуда они берутся? Оказалось, что они возникают при разрядах молний.

Профессор Мюнхенского технического университета Шуман рассчитал их частоту. Выяснилось, что она равна 10 Гц. Но именно с таким ритмом происходят колебания человеческого мозга! Этот удивительный факт не мог быть простым совпадением. Мы живём внутри гигантского волновода, который своим ритмом управляет нашим организмом. Дальнейшие исследования подтвердили это предположение. Оказалось, что искажение волн Шумана, например, при магнитных бурях ухудшает состояние здоровья людей.

Т.е. для нормального самочувствия человека ритм важнейших колебаний человеческого организма должен резонировать с частотой волн Шумана.

Электромагнитный смог от работы бытовых и промышленных электроприборов искажают природные волны Земли, и разрушает наши тонкие взаимосвязи со своей планетой.

Законам резонанса подчинены все объекты Вселенной. Этим законам подчиняются даже взаимоотношения людей. Так, выбирая себе друзей, мы ищем себе подобных, с которыми нам интересно, с которыми находимся «на одной волне».

источник

Мы часто слышим слово резонанс: «общественный резонанс», «событие, вызвавшее резонанс», «резонансная частота». Вполне привычные и обыденные фразы. Но можете ли вы точно сказать, что такое резонанс?

Если ответ отскочил у вас от зубов, мы вами по-настоящему гордимся! Ну а если тема «резонанс в физике» вызывает вопросы, то советуем прочесть нашу статью, где мы подробно, понятно и кратко расскажем о таком явлении как резонанс.

Прежде, чем говорить о резонансе, нужно разобраться с тем, что такое колебания и их частота.

Колебания – процесс изменения состояний системы, повторяющийся во времени и происходящий вокруг точки равновесия.

Простейший пример колебаний — катание на качелях. Мы приводим его не зря, этот пример еще пригодится нам для понимания сути явления резонанса в дальнейшем.

Резонанс может наступить только там, где есть колебания. И не важно, какие это колебания – колебания электрического напряжения, звуковые колебания, или просто механические колебания.

Какие вообще бывают колебания и какие у них характеристики?

Колебания характеризуются амплитудой и частотой. Для уже упомянутых выше качелей амплитуда колебаний — это максимальная высота, на которую взлетают качели. Также мы можем раскачивать качели медленно или быстро. В зависимости от этого будет меняться частота колебаний.

Частота колебаний (измеряется в Герцах) — это количество колебаний в единицу времени. 1 Герц — это одно колебание за одну секунду.

Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.

Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.

Резонанс в физике – это частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы.

Суть явления резонанса в физике состоит в том, что амплитуда колебаний резко возрастает при совпадении частоты воздействия на систему с собственной частотой системы.

Известны случаи, когда мост, по которому маршировали солдаты, входил в резонанс от строевого шага, раскачивался и разрушался. Кстати, именно поэтому сейчас при переходе через мост солдатам положено идти вольным шагом, а не в ногу.

Явление резонанса наблюдается в самых разных физических процессах. Например, звуковой резонанс. Возьмём гитару. Само по себе звучание струн гитары будет тихим и почти неслышным. Однако струны неспроста устанавливают над корпусом – резонатором. Попав внутрь корпуса, звук от колебаний струны усиливается, а тот, кто держит гитару, может почувствовать, как она начинает слегка «трястись», вибрировать от ударов по струнам. Иными словами, резонировать.

Еще один пример наблюдения резонанса, с которым мы сталкиваемся — круги на воде. Если кинуть в воду два камня, попутные волны от них встретятся и увеличатся.

Действие микроволновки также основано на резонансе. В данном случае резонанс происходит в молекулах воды, которые поглощают излучение СВЧ (2,450 ГГц). Как следствие, молекулы входят в резонанс, колеблются сильнее, а температура пищи повышается.

Резонанс может быть как полезным, так и приносящим вред явлением. А прочтение статьи, как и помощь нашего студенческого сервиса в трудных учебных ситуациях, принесет вам только пользу. Если в ходе выполнения курсовой вам понадобится разобраться с физикой магнитного резонанса, можете смело обращаться в нашу компанию за быстрой и квалифицированной помощью.

источник

Что общего между звуками прекрасной музыки, катанием на качелях, грозой и молитвой? Как мы связаны со своей Землей? И что происходит, когда работают целители? Этому явлению дано очень простое определение — резонанс.

Резонанс, как основа всех явлений в природе

С переходом к новому веку, как обычно, не было недостатка в предсказаниях относительно тенденций развития науки и техники. Значительно реже встречались высказывания о будущем самого человечества как вида. Если не брать в расчет глобальные катаклизмы типа затопления-оледенения или столкновения с астероидом, то пожалуй, наиболее важное, ярко выраженное масштабное явление, способное сильно повлиять на человека – это электромагнитные поля. Даже для тех, у кого невидимый мир населен ангелами, бесами и другими сущностями, он реально пронизан электромагнитными колебаниями, вибрациями самых разных частот, порожденными как человеком, так и самой природой. Однако видим мы менее одного процента всего этого великолепия.

Распространяются эти колебания в виде волн. Замечательно, что колебания и волны любой природы описываются одними и теми же уравнениями. И если разобраться с некоторыми понятиями, удобными для рассуждений о колебаниях и волнах, то мы довольно неожиданно сможем выйти на очень разные явления в жизни, о которых точно думали, но «не у кого было спросить». Начнем с того, что легче ощутить.

Вибрации и колебания, волны, резонанс в музыке

Вот, например, восхитительное явление – резонанс. Не только музыканты знают, что если бы не резонанс, то музыки не существовало бы. Щипком струны, ударом молоточка по ней или потоком воздуха в трубке исполнитель создает только слабое первоначальное колебание. Оно осталось бы незамеченным, если бы не резонатор или, проще говоря, корпус инструмента, который способен откликаться на каждую частоту, усиливать ее, придавать тембр.
Такое возможно потому, что у этого резонатора есть свои резонансные частоты, то есть он способен усиливать, окрашивать и продлевать некоторые колебания струны. Но не любые, а только те, которые близки к так называемым собственным частотам. А эти последние зависят, прежде всего, от размеров и формы корпуса-резонатора. И еще от множества тонкостей, куда входят вид древесины, влажность её и т.п. Вот здесь-то и проявляется мастерство изготовителя инструмента, о котором мы так часто слышим. В случае удачи инструмент будет петь в руках исполнителя в полном соответствии с той музыкой, что звучит в его душе.

Интересно, что, по современным понятиям, органы и системы человеческого тела имеют собственные частоты колебаний, которые звуковая волна усиливает или подавляет, тем самым влияя на их функции.

Бывают резонансы и другого вида. Механический резонанс, например. Можно хорошо ощутить механический резонанс, предаваясь всеми любимому веселому занятию – раскачиванию на качелях. Развлекая себя или ребенка, мы прилагаем силу нужного направления в строго определенный момент. Точная формула для определения этого момента довольно сложна, как ни странно. Но каждый легко определяет его инстинктивно. Очень странно выглядел бы человек, который пытается раскачать качели, подталкивая их не вовремя, то есть не в резонансе с собственной частотой его колебаний. Здесь уместно сказать, наконец, что такое частота колебания. Она показывает, сколько раз в секунду качели придут в одно и то же место своей траектории. Ну, скажем для определенности, – в то место, где их толкают. И если частота колебаний качелей совпадает с частотой толчков, возникает явление резонанса – тогда размах колебаний качелей будет возрастать. Для наших дальнейших рассуждений важно, что при резонансе некие внешние воздействия синхронизованы во времени с внутренними свойствами системы, то есть максимально реализован принцип «в нужное время в нужном месте».

Читайте также:  Вредно или полезно острое

Явление механического резонанса способно причинить и жуткий вред. Известен случай разрушения моста, по которому маршировала рота солдат. Мост-то, наверное, рассчитывался на очень большие нагрузки. Но резонанс! Кто же мог предполагать, что собственная частота колебаний моста совпадет с ритмом продвижения роты. Солдаты шли в ногу, синхронно чеканили шаг, как один большой солдат. И именно с той частотой, которая была резонансной для этого моста! С той поры в уставе отмечено, что при передвижении по мосту необходимо сбивать шаг.

Мы познакомились со звуковыми и механическими резонансами. И теперь легче будет разобраться с самыми интересными резонансами – электромагнитными.

Резонанс другого уровня взаимодействия — электромагнитный

Резонанс Шумана

Мы живем в слое между поверхностью Земли и ионосферой, нижняя граница которой находится на уровне примерно 80 км и называется слоем Хевисайда. Если представить Землю в виде апельсина размером 5 сантиметров, то этот слой будет на высоте 3 миллиметра, то есть этот слой очень близко к Земле. Длинноволновая радиосвязь возможна только благодаря слою Хевисайда, потому что именно от него происходит отражение радиоволн, огибающих Землю. Земля – хороший проводник электрического тока, в любом случае на ней для этого достаточно воды, причем две трети из нее – соленая вода океанов. В ионосфере тоже есть чему обеспечивать проводимость – солнечный свет отрывает электроны от молекул газов разреженной атмосферы, создается плазма. В пространстве между этими сферами – воздух, слабый проводник. Получается симметричный сферический конденсатор, образованный двумя помещенными друг в друга проводящими сферами. При этом Земля заряжена отрицательно, а ионосфера – положительно. Такая система называется волноводом, в ней хорошо распространяются электромагнитные волны.

Те волны, которые являются резонансными для этого гигантского природного волновода, могут несколько раз огибать Землю. Совершенно аналогично тому, как звук резонирует в объеме музыкального инструмента. Какие это частоты? Такую задачу в 1949 поставил перед своими студентами на занятиях по электрофизике профессор Мюнхенского технического университета Винфред Отто Шуман. Если подойти к вопросу приблизительно и просто, достаточно знать размеры Земли и ее ионосферы, чтобы рассчитать эти частоты. Получилось, что в полости Земля – ионосфера могут распространяться (резонировать) электромагнитные волны довольно низкой, даже сверхнизкой частоты – 10 герц. Вскоре Шуман и экспериментально обнаружил такие волны и опубликовал статью об этом в каком-то физическом журнале. Эти волны так и стали называть – резонансы Шумана. А откуда же они вообще взялись, эти волны, в полости Земля – ионосфера? Молнии! Их, оказывается, так много вблизи Земли – в среднем около сотни разрядов за минуту. Молнии производят целый спектр электромагнитных колебаний. Но только те из них, что совпадают с собственными частотами природного волновода, то есть с рассчитанной частотой около 10 герц, могут огибать Землю несколько раз за секунду.

Никто поначалу не придал особого значения этим открытиям, даже сам Шуман. Тем более что на самом-то деле по миру ранее уже бродили подобные идеи. Автор их – гениальный серб Никола Тесла – создавал искусственные молнии еще в конце девятнадцатого века. Он обнаружил, что при разряде появляются волны очень низкой частоты. И они могут глубоко проникать в Землю без ослабления, потому что резонируют с собственными колебаниями Земли. Более того, образуется стоячая волна, обегающая Землю. Эти исследования Теслы тогда не были поддержаны – время не пришло. Пришло оно через 50 лет – с работами Шумана.

Резонанс и новый взгляд на вибрации и частоту в науке, резонанс Шумана

Здоровое любопытство иногда заставляет исследователей просматривать книги и журналы по далеким от специальности разделам науки. Быть бы резонансам Шумана похороненными в анналах истории науки, если бы не любопытство одного оставшегося неизвестным психолога, просматривавшего физико-техническую периодику. Прочтя публикацию Шумана, он оторопел. Основная частота резонанса – около 10 герц – совпадала с основным ритмом человеческого мозга – альфа-ритмом! Почему?! Конечно, он сразу же позвонил Шуману. Ведь в высшей степени удивительно, что совпадают ритмы Земли и мозга человека в состоянии спокойного бодрствования. Шуман подключил к работам студента-выпускника, будущего своего преемника Герберта Кёнига. Необычным делом увлекался этот студент. Он исследовал, как работают те, кто может находить в земле воду или минералы при помощи ивового прута, лозоходцы то есть. Далее мы увидим всю примечательность этого обстоятельства. В своей докторской диссертации Кёниг сообщил о более точных измерениях основной частоты резонанса Шумана – 7,83 гц.

Удалось измерить и более высокие гармоники первой частоты. Они составляют в среднем 14, 20, 26, 33, 39 и 45 герц. Оказалось, и этим частотам есть соответствие в спектре волн, излучаемых мозгом человека! Словом, частотная полоса изменения биотоков мозга лежит в пределах изменения резонансных частот полости Земля – ионосфера в спокойных условиях. Колебательная система «человек – среда обитания» находится в состоянии равновесия. Это не может быть случайным совпадением! Если бы мы сознательно всё устраивали для жизни на Земле, лучше бы не сделали.

Измерить резонанс Шумана – это значит для какого-нибудь места на Земле сделать запись интенсивности электрического и магнитного полей отдельно в зависимости от времени либо от частоты. Несмотря на глобальную важность, до недавнего времени работ по резонансам Шумана было мало. Может, потому, что этим диапазоном частот интересуются военные – для связи с подводными лодками, ведь такие волны проникают глубоко в воду и в землю. А может, потому, что измерять резонансы Шумана – трудная задача. Они слишком слабы на фоне собственных электрического и магнитного полей Земли, которые в 10 тысяч, а то и в 100 тысяч раз больше. Чтобы измерить резонансы Шумана, необходима стандартная электроника (усилители-предусилители) и очень необычные антенны. Для измерения электрического поля обычная антенна должна была бы быть длиной 20 тысяч километров. Поэтому используют специальную, шаровую антенну вместе с усилителем. Магнитные поля измерять – тоже нужны всяческие ухищрения. Перемещение людей, животных, раскачивание деревьев при ветре могут перечеркнуть кропотливые труды коллективов геофизиков и радиоэлектронщиков.

Где измеряют резонансы Шумана? Да по всей Земле. В Америке и в Австралии, в Финляндии, Германии и в России, в Англии и в Исландии.
Чтобы получше понять явление, хорошо бы узнать, отчего оно зависит. Частота и интенсивность естественных пульсаций Земли – не постоянные фиксированные величины. Как показали дальнейшие исследования, они слегка изменяются под влиянием следующих факторов:

Географическое место. Сильнее всего резонансы Шумана заметны вблизи мировых очагов гроз. Если рассмотреть данные со спутников NASA о местах возникновения молний за много лет, можно заметить, что молнии в основном случаются над землей, а не над поверхностью воды. Больше всего их в Африке. Так ведь по современным воззрениям там и появился человек.

Время суток. Ночью Солнце не ионизирует атмосферу на темной стороне Земли, и слой Хевисайда здесь исчезает, а с ним и шумановские волны. С рассветом восстанавливается верхняя граница околоземного волновода и вновь появляются волны Шумана. Земля отдыхает и пробуждается вместе с нами. Или это мы – с нею.

Чистота воздуха. Наблюдается повышение частоты, если в воздухе много водяных паров, газов.

Окружающая обстановка. Электромагнитный смог от всего электрооборудования перекрывает в сотни раз живительные природные всплески резонансов Шумана. Их гасят и некоторые строительные материалы. Может, поэтому собаки и дети хотят гулять, даже если только что вернулись с улицы.

Вспышки на Солнце. Исследователи утверждают, что при магнитных бурях или в условиях электромагнитных полей техногенного происхождения, когда изменяется частота природных резонансов Шумана, ухудшается состояние людей в возрасте и детей, чаще случаются гипертонические кризы, эпилептические припадки и суициды.

А каким образом все же осуществляется влияние магнитных бурь на человека? Возможно, дело обстоит так. При вспышках на Солнце изменяются свойства слоя Хевисайда – верхней границы нашего природного резонатора. Это приводит к изменениям частоты резонанса Шумана. Еще в 1665 году Христиан Гюйгенс заметил, что если неподалеку друг от друга начинают колебаться два маятника с близкой, но все же различной частотой, то по прошествии некоторого времени их частота колебаний станет одинаковой. И это всеобщий закон. Каждой колебательной системе «легче» колебаться в такт, чем вразнобой. Значит, резонансы Шумана для нас являются как бы ритмоводителем.

Изменилась по какой-то причине частота Шумана – это приводит к изменению частоты электромагнитных колебаний мозга и ухудшению состояния человека. Таким образом, именно через резонансы Шумана здоровье человека связано с геофизическим состоянием Земли. Более того, оказалось, что не только физическое здоровье, но и душевное, да и просто способность мыслить. Ведь мозг работает в режиме альфа-ритма (на частоте около 8 герц) в тех случаях, когда человек, находясь в состоянии мышечной релаксации, решает творческие задачи. У большинства людей, имеющих четко выраженный альфа-ритм, преобладает способность к абстрактному мышлению. Изредка встречаются люди, у которых обнаруживается полное отсутствие альфа-ритмов. Они свободно мыслят зрительными образами, однако испытывают трудности в решении проблем абстрактного характера.

Те, кто склонен к исследовательской деятельности, могут сами проследить связь собственного самочувствия (изменение артериального давления, например) с изменениями в спектре волн Шумана. Сделать это можно, посещая, например, сайт Томского государственного университета http://sosrff.tsu.ru/. Данные обновляются каждые два часа. Кроме того, интересно самому убедиться, действительно ли растет частота шумановских волн, как сообщается иногда об этом. Ведь это означало бы, ни много ни мало, что идет эволюция мозга человека.

Оказалось: собственное магнитное поле Земли пульсирует в том же диапазоне частот, что и резонансы Шумана, и ритмы мозга. Это привело даже к некоторой путанице. Вы можете иногда услышать, что резонансы Шумана – это просто колебания магнитного поля Земли. А не волны, рожденные молниями и огибающие Землю в естественном волноводе.
Сейчас количество публикаций по резонансам Шумана сильно возросло – примерно до тысячи в год. Обсудим две главных причины этого.

Во-первых, обнаружилась возможность определения по резонансам Шумана температуры и грозовой активности в масштабах планеты. Сейчас уже точно известно, что чем выше температура воздуха нижних слоев атмосферы, тем больше гроз, молний и осадков. А значит, мощнее резонансы Шумана. По нехитрой логике, измеряя интенсивность резонансов в разных местах Земли, можно судить о ее средней температуре. То есть резонанс Шумана – это термометр для матушки-Земли. «Средняя по Земле» температура – сейчас больной вопрос для всех людей вообще, а не только для ученых. Не утихают споры, началось ли уже глобальное потепление или это проблема наших потомков.

С резонансами Шумана, точнее, с деятельностью человеческого мозга на частотах этих резонансов, некоторые исследователи связывают различные эффекты дальновидения, целительства, гипноза, поисков воды и полезных ископаемых с помощью лозы или рамки. Доктор Джон Циммерман, основатель и президент Института биоэлектромагнетизма в Рено, штат Невада, занимался изучением обширной литературы по деятельности целителей. Он обнаружил, что в начале сеанса у целителя устанавливается связь с волнами Шумана. Его правое и левое полушария мозга синхронизируются, в то время как обычно они слегка разбалансированы. Оба полушария начинают работать в альфа-ритме с частотой около 8 герц. Затем в альфа-ритм входят и мозговые волны пациента. Эти волны синхронизируются с волнами целителя. У пациентов во время сеанса также наблюдается частотное равновесие между полушариями мозга. Образно говоря, целитель присоединяет своего пациента к электромагнитному полю волн Шумана и к пульсациям магнитного поля Земли.

Резонанс ритмов человека при медитации и молитве

Существуют исследования, свидетельствующие, что при медитации и во время молитвы человеческий мозг тоже работает с частотой около 8 герц, в ритме с волнами Шумана и магнитным полем Земли.

До сих пор мы размышляли главным образом о природной составляющей системы человек – среда его обитания. Но уже существует понятие «электромагнитный смог». Это хаотическое излучение от различных бытовых и промышленных электроприборов. Его мощность уже в сотни раз превышает природный фон. Конечно, волны с частотой альфа-ритма очень слабенькие, их размах, или амплитуда, составляет всего около 30 миллионных долей вольта. Казалось бы, это ничтожно мало по сравнению с собственным магнитным полем Земли и с техногенными полями. Но частоты-то совпадают с ритмами мозга! Вспомните о резонансных эффектах! С этой точки зрения для человека опасны устройства, работающие в том же диапазоне частот, что и слабые, но такие необходимые естественные поля. Вот, например, сотовые телефоны. Все исследования их «вредности» проводились с учетом только их теплового воздействия. Но очень важно и информационное воздействие, которое никто не учитывает. Ведь одна из частот излучения сотового телефона – все те же 8 Гц – связана с нашей индивидуальной умственной деятельностью. Следовательно, извне, причем из непосредственной близости, в головной мозг человека поступают сигналы, которые способны резонансным образом взаимодействовать с собственной биоэлектрической активностью головного мозга и тем самым нарушать его функции. Такие изменения заметны на электроэнцефалограмме и не исчезают длительное время после окончания разговора.

Сообщают, что в Америке каждый сотрудник NASA имеет при себе приборчик – индивидуальный источник «полезных» электромагнитных волн в диапазоне волн Шумана, для улучшения самочувствия при «подстройке» к естественным природным ритмам.
А вот пчелы… Пчелы вымирают. По заключению ученых немецкого университета Кобленц-Ландау, в США и в некоторых странах Европы погибло до 70% пчелиных семей. Их гибель связывают с потерей ориентации под воздействием техногенных электромагнитных полей, порождаемых мощными антеннами сотовой связи.

Человечество как вид обладает необычайным потенциалом, который едва только начали изучать. Дар творчества, интуиция, талант – без этих качеств человек не смог бы создать тот прекрасный мир, в котором он живет. А что, если, окутанные антропогенным электромагнитным смогом, разрушающим тонкие настройки взаимосвязей в этом изменчивом, колеблющемся мире, мы потеряем свои бесценные дары?

…Рассвет. На зыбкой границе между сном и бодрствованием Земля посылает нам свой утренний привет на частоте 7,8 герц – частоте альфа-ритма нашего мозга. Что бы ни происходило, мы в резонансе со своей Землей и со всем живым на ней.

Наиболее выдающиеся из всех известных изобретений Теслы связаны с понятием резонанса. Тесла считал резонанс ключом к пониманию и управлению любой системой, природной или рукотворной. Каждая система, по его мнению, обладает некой «собственной частотой колебания». Таких частот может быть несколько, они являются своего рода «паспортом», «удостоверением личности» любой системы. Любые системы могут взаимодействовать, будучи настроенными друг на друга. Это очень легко объяснить на примере человеческих отношений: два человека, желающие понять друг друга (то есть «настроенные в резонанс» друг к другу), потратят гораздо меньше времени и сил на решение какой-то проблемы, чем те же два человека, не желающие понимать или просто безразличные. Таким образом, задача человека — не «брать силой» у Природы ее богатства, а уметь настраивать свою технику в резонанс с природными явлениями, чтобы взаимодействие было максимально естественным и эффективным. По этому пути и шел сам Тесла, поражая современников результатами.

источник

Источники:
  • http://fb.ru/article/280153/luchshiy-primer-rezonansa-obyyasnyayuschiy-ego-sut
  • http://www.syl.ru/article/415685/primeryi-rezonansa-v-jizni
  • http://chebo.pro/tehnologii/teoriya-vozniknoveniya-rezonansa-ego-primenenie-v-zhizni.html
  • http://zaochnik.ru/blog/rezonans-v-fizike-dlya-chajnikov/
  • http://studwood.ru/1832847/matematika_himiya_fizika/rezonans_primenenie
  • http://www.doklad-na-temu.ru/fizika/rezonans.htm
  • http://zen.yandex.ru/media/id/598190739044b584b313eb6b/5ab118984bf1616bbfd8d8c6
  • http://ladstas.livejournal.com/206431.html