Меню Рубрики

К платформенным чехлом сложенным породами приурочены полезные ископаемые

Наиболее древние отложения платформенного чехла- породы верхнекарельского комплекса протерозоя — залегают в узких грабенах фундамента Балтийского щита. Здесь же находятся и отложения иотния. Характерно, что низы чехла Восточно-Европейской платформы прорваны интрузией гранитов рапакиви, возраст которых 1,61-1,67 млрд. лет. В закрытых районах платформы низы чехла изучены лишь по данным бурения — это так называемый рифейский комплекс. Сложен он обломочными красноцветными породами- гравелитами, песчаниками, аргиллитами, иногда с прослоями базальтов и вулканических туфов. Рифейские отложения развиты в пространстве спорадически (пятнисто) и приурочены опять-таки к грабенам фундамента, которые называются авлакогенами. Такая особенность залегания ранних комплексов чехла позволяет рассматривать начальный этап развития платформы как авлакогенную, или доплитную, стадию.

Начиная с вендского времени, осадочный чехол почти полностью перекрывает территорию Восточно-Европейской платформы, исключая Балтийский и Украинский щиты и некоторые районы Тиманского кряжа. Фундамент платформы испытывает почти повсеместно тенденцию к прогибанию, что в конечном итоге приводит к широкому развитию осадочного чехла и к образованию плиты. Поэтому-то второй этап в геологической истории развития платформы рассматривают как плитную стадию.

В составе осадочного чехла можно выделить отложения всех возрастов палеозойской, мезозойской и кайнозойской эр. Наиболее широко в пространстве распространены породы палеозоя. Сложены они преимущественно морскими осадками: песчаниками, глинами, известняками, доломитами. В верхней части разреза (пермь) появляются континентальные красноцветные песчаники и конгломераты, а также каменная соль, гипс и ангидрит. Общая мощность палеозойских образований 3,0-3,5 км, а в Прикаспии она достигает 10 км и более.

Мезозойские отложения выполняют в основном южные и крайние северо-восточные районы платформы, образуя небольшие пятна и в центре ее. Начинаются они с красноцветных триасовых песчаников, далее идут преимущественно морские юрские и меловые слои, представленные песчаниками, глинами, известняками. Суммарная мощность отложений в среднем 0,5 — 2,0 км; в Прикаспии же только толща триаса составляет почти 3 км.

Кайнозойские породы известны лишь на юге платформы — это морские пески, глины и органогенные известняки палеогеновой и неогеновой систем. Широко распространены в пространстве четвертичные осадки (отложения рек, озер, ледников). Общая мощность отложений кайнозоя 1,0 км, в Прикаспии — более 3,0 км.

Как видим, разрез осадочного чехла Восточно-Европейской платформы сложен породами преимущественно морскими. Мощность его не превышает 3-5 км. Исключение составляет Прикаспийская низменность, где мощность чехла увеличивается до 20-22 км, а в его составе появляется мощная толща каменной соли раннепермского возраста.

Тектоническое строение Восточно-Европейской платформы определяется тремя крупнейшими элементами: Балтийским и Азово-Подольским щитами и Русской плитой. Первые два элемента, как структуры фундамента, рассмотрены выше. Остановимся на строении Русской плиты, занимающей большую часть территории платформы. В тектоническом строении ее принимает участие гряды, массивы, антеклизы, своды, валы, синеклизы, авлакогены, впадины и т. п. (рис. 5). Характерно, что заложение и развитие структурных элементов осадочного чехла платформы совершенно не согласуется с положением структурных элементов геосинклинального этапа развития. Из рис. 6 видно, что структуры фундамента, т. е. геосинклинальные структуры, вытянуты в субмеридиональном направлении, а платформенные элементы имеют близширотную ориентацию. Несовпадение структурных планов геосинклинального и платформенного этажей — типичная черта докембрийских платформ.


Рис. 5. Схема региональной тектоники Восточно-Европейской платформы. 1 — щиты: А — Балтийский, Б — Украинский, или Азово-Подольский; 2 — региональные поднятия: I — Тиманская гряда, II — Воронежский массив, III — Белорусский массив, IV — Волго-Уральская антеклиза; 3 — границы синеклиз; 4 — передовые прогибы: а — Предуральский, б — Преддонецкий, в — Предкарпатский; 5 — южная граница платформы; 6 — Урал.

Наиболее крупными положительными тектоническими элементами Русской плиты являются Тиманская гряда, Воронежский и Белорусский массивы, Волго-Уральская антеклиза. Строение последней изучено лучше других. Она представляет собой сложно построенную положительную структуру, состоящую из поднятий и депрессий. Мощность чехла соответственно колеблется от 1-1,5 км до 4-6 км. К поднятиям антеклизы относятся Токмовский, Котельничский, Татарский и Оренбургский своды; к депрессиям — Бузулукская впадина, Верхнекамский и Серноводско-Абдулинский прогибы. Строение других положительных структурных элементов Русской плиты во многом сходно со строением Волго-Уральской антеклизы. Отличаются они лишь более приподнятым залеганием фундамента, а в ряде мест и выходом его на дневную поверхность, в связи с чем выделяются как массивы и гряды, хотя принципиальная разница между терминами «массив» и «антеклиза» отсутствует.

Крупные отрицательные структуры — Московская, Мезенская, Балтийская, Печорская, Украинская и Прикаспийская синеклизы и Рязано-Саратовский прогиб — занимают большую часть территории Русской плиты и характеризуются максимальной мощностью чехла. Геологическое строение их весьма разнообразно. В нем принимают участие поднятия (своды, валы), впадины и прогибы.

Тектоническое строение краевых областей Восточно-Европейской платформы осложнено рядом передовых прогибов, имеющих либо герцинский (Предуральский прогиб), либо альпийский (Предкарпатский прогиб) возраст заложения. Часто вместе с прогнутыми моноклинальными склонами платформы (перикратонными опусканиями) эти прогибы образуют краевые системы (по Е. В. Павловскому) — области наиболее погруженного залегания фундамента.

При рассмотрении тектонического строения Восточно-Европейской платформы в региональном плане привлекает внимание закономерная группировка крупных поднятий в пояса поднятий и крупных депрессий в пояса прогибаний (см. рис. 5). Так, на северо-западе платформы располагается крупнейшая область поднятий — Балтийский щит, в пределах которого осадочный чехол практически полностью отсутствует. К востоку и югу от него в виде дуги прослеживается внутренний региональный пояс прогибания, включающий Мезенскую, Московскую и Балтийскую синеклизы. Фундамент здесь погружен на глубину до 3,5 км. Далее к востоку и югу пояс прогибания сменяется новым региональным поясом поднятий, в состав которого входят Тиманская гряда, Волго-Уральская антеклиза, Воронежский массив, Азово-Подольский щит и Белорусский массив. В ряде мест этого пояса фундамент выходит на дневную поверхность, в большинстве случаев он погружен в среднем до глубины 1 км. Пояс поднятий к востоку и югу сменяется окраинным региональным поясом прогибания, охватывающим Печорскую синеклизу, Предуральский передовой прогиб, Прикаспийскую и Украинскую синеклизы. Этот пояс прогибания характеризуется наиболее глубоким залеганием фундамента — до 20 км.


Рис. 6. Простирание структурных элементов (заштрихованы) в раннепротерозойское время на юге Восточно-Европейской платформы (по В. Б. Сологубу, А. В. Чекунову и Е. В. Павловскому) и положение современных структур (выделены крапом).

Образование региональных поясов поднятий и опусканий, вероятно, обусловлено существованием сети глубинных разломов, разбивающих фундамент на геоблоки. Активно развивавшиеся в палеозое геосинклинальные системы, окаймлявшие Восточно-Европейскую платформу с востока и юга, втягивали в погружение и прилегающие области докембрийской платформы. Причем наиболее интенсивное прогибание испытывал край платформы, непосредственно контактирующий с геосинклиналями, что предопределило максимальное погружение фундамента окраинного регионального пояса прогибания. Таким образом, произошло ступенчатое погружение фундамента Восточно-Европейской платформы по системе разломов от Балтийского щита в сторону палеозойских геосинклиналей Урала и Предкавказья, в этом же направлении отмечается и нарастание мощности осадочного чехла платформы от 0 до 20 км.

В тектоническом строении осадочного чехла Восточно-Европейской платформы, так же как и в строении фундамента, большую роль играют разломы. Несмотря на то, что в осадочный чехол «пробиваются» далеко не все разломы фундамента, все же влияние их на формирование структур чехла весьма велико. Мы уже указывали на это при рассмотрении региональных поясов поднятий и опусканий. Прослеживается влияние разломов и на образование подчиненных поясам структурных элементов. Чаще всего разломы выступают как естественные границы между поднятиями и опусканиями. В качестве одного из многочисленных примеров этого рассмотрим следующий.

Долгое время геологи спорили о границах Прикаспийской синеклизы. Одни считали, что границей является крупный разлом, окаймляющий депрессию по всему периметру; другие утверждали, что граница синеклизы тектонически не выражена и проводится по появлению в разрезе мощных соленосных толщ. Дешифрование сканерного изображения Нижнего Поволжья — пограничного района между Прикаспийской синеклизой и Воронежским массивом, полученного с американского спутника «Ландсэт-I» в июне — июле 1973 г., помогло решить затянувшуюся дискуссию. П. В. Флоренский и А. С. Петренко, анализировавшие космические снимки, выделили в этом районе целую серию разломов, ориентированных преимущественно в северо-западном и северо-восточном направлениях (рис. 7). Границей, разделяющей различно ориентированные разломы, оказалась долина Волги. Эти авторы пишут, что «. разломы образуют как бы ветви елки, стволом которой является долина Волги. «. Итак, разломная граница синеклизы доказана. Более того, напрашивается еще один интересный вывод о связи глубинной структуры коры с гидросетью, ведь неспроста Волга течет вдоль крупных разломов.


Рис. 7. Сканерное изображение Нижнего Поволжья, полученное с американского спутника ‘Ландсэт-1’ (а) и схема разломов этого района (б), отдешифрированных по космическому снимку (упрощено). 1 — пойма Волги; 2 — разломы, хорошо и слабо выраженные.

Кроме функции разграничения разломы выполняют также роль структурно-формирующего фактора. В чехле над разломами возникают флексурно-разрывные зоны, структурные террасы, валы и локальные поднятия.

Развитие разломов Восточно-Европейской платформы имеет сложную историю. Исследователи (А. М. Бельков, 1972 г.) выделяют различные категории разломов. Разломы, закончившие свое развитие в дорифейское время, можно рассматривать как разломы, не развивавшиеся на платформенном этапе. Разломы раннего проявления развивались только в начальный период формирования чехла (рифей, ранний палеозой). Третьи разломы возникли и развивались лишь в альпийскую эпоху тектогенеза — это разломы позднего проявления. Такие молодые разломы часто возникали на месте древних расколов фундамента. Наконец, выделяется еще одна очень интересная категория разломов — непрерывного развития, которые проявлялись в течение палеозойской, мезозойской и кайнозойской эр. С такими разломами связаны флексурно-разрывные зоны, затрагивающие весь осадочный чехол (Степановско-Фурмановкая, Советско-Луговская флексуры в Нижнем Поволжье).

В пределах Восточно-Европейской платформы расположен целый ряд месторождений полезных ископаемых, имеющих большое народнохозяйственное значение. К ним относятся железные руды, нефть, газ, каменный уголь, цветные металлы, апатиты, минеральные соли, строительные материалы и т. п.

источник

Земная кора неоднородна и состоит из разных структурных элементов. Изучение строения литосферы (твердой оболочки Земли) входит в число задач, которые ставит перед собой наука география. Щиты — это одни из таких элементов. Именно о них пойдет речь в данной информационной статье.

Основными структурными элементами земной коры являются литосферные плиты, которые могут быть континентальными или океаническими. Эти два типа отличаются друг от друга по строению (поперечному разрезу): в плитах континентального типа присутствует гранитный слой.

Платформами называют самые стабильные (в тектоническом плане) части литосферных плит Земли. В то же время они выступают ядрами (основой) для материков. Кроме них в пределах литосферных плит также выделяются орогенные (складчатые) пояса — эпиплатформенные и эпигеосинклинальные.

Платформа — это наиболее устойчивая структура земной коры, которая сформировалась там, где сотни миллионов лет назад существовали мощные горные системы. Со временем они разрушились, а поверхность на этом месте выровнялась. Так образовывается мощная и устойчивая структура — фундамент. В дальнейшем на нем начинают накапливаться осадочные породы, постепенно создавая мощный слой (чехол).

Все существующие на Земле платформы делятся на древние (в англоязычной литературе их часто именуют кратонами) и молодые. Ниже на карте представлены основные (древние) платформы нашей планеты. Они отмечены красноватым оттенком.

Структуру земной коры изучает наука география (7 класс). Далее мы более детально рассмотрим строение платформы.

Платформа состоит из двух слоев: кристаллического фундамента (залегает внизу) и осадочного чехла (покрывает фундамент).

В геологической науке выделяют структуры четырех порядков, из которых состоит любая платформа. Щит, плита, антеклизы и синеклизы — это основные из них. Далее мы будем рассматривать именно их. Ознакомления с этими структурами вполне достаточно для полноценного освоения школьного курса «География».

Щиты — это выходы на земную поверхность кристаллического фундамента платформы. Размеры таких выходов могут достигать 1000 и более километров в длину. Как правило, щиты характерны именно для древних платформенных структур.

Плиты — это обширные участки платформы, которые полностью покрыты осадочным чехлом. Очень часто молодые по возрасту платформы покрыты таким чехлом целиком. Поэтому их также называют плитами.

Антеклизы и синеклизы — это уже структуры 2-го порядка. Антеклизой называют пологие приподнятые участки плит. Синеклиза — это пологая впадина на плите или, что встречается реже, в пределах кристаллического щита.

В этой статье мы рассмотрим щиты древних платформ Евразии — Сибирской и Восточно-Европейской. Однако перед этим более подробно остановимся на вопросе «что такое щит».

Понятие «щит» широко используется в геологической науке. Впервые этот термин был употреблен в Германии Эдуардом Зюссом (в 1903 году).

Щит — это обнажение кристаллического фундамента в пределах древней платформы. Таким образом, на поверхность Земли выходят докембрийские породы, возраст которых может достигать 3,5-4 миллиардов лет. Они, как правило, представлены гранитами, кварцитами, гнейсами, которые обнажаются на довольно обширных площадях.

Щиты являются основными и самыми устойчивыми структурами материков. Как правило, они окружены поясами, сложенными из горных пород кембрийского возраста. В рельефе щиты чаще всего выражены немного выпуклыми равнинами или небольшими возвышенностями.

Щиты окружены более подвижными и мобильными зонами, процессы горообразования в которых были зарегистрированы сравнительно недавно (по геологическим меркам — 100-200 миллионов лет назад).

Самые известные примеры щитов на нашей планете: Канадский, Украинский, Алданский, Балтийский. К этим областям приурочены крупные месторождения рудных полезных ископаемых (железная руда, медь, марганец, золото, никель и т. п.). Так, в пределах Алданского щита обнаружены мощные залежи медных руд и апатитов. На Украинском щите найдены крупнейшие в мире запасы железистых кварцитов (Криворожский бассейн).

Сибирская платформа — крупная геологическая область, занимающая огромную площадь в северо-восточной части Евразии. Это одна из древнейших платформ на планете, фундамент которой образовался еще в архее. После этого он не один раз покрывался водами морей, вследствие чего здесь сформировался мощный чехол осадочных пород.

Сибирская платформа имеет четкие границы на поверхности Земли: северная — это южные склоны гор Бырранга, западная — долина Енисея, южная граница проходит по Становому хребту, а восточная — по низовьям реки Лены.

Фундамент Сибирской платформы сложен породами архейского и протерозойского возраста, которые сильно смяты в складки. Это гнейсы, амфиболиты, сланцы, мрамор и другие. Их возраст довольно солидный: от 2,3 до 3,7 миллиарда лет. Осадочный чехол платформы сложен породами разных возрастов. Для северо-восточной оконечности платформы характерны интрузивные породы, которые формируют алмазные трубки.

Читайте также:  Эх закуски нет полезней и прочней

Сибирская платформа необычайно богата различными минеральными ресурсами. Здесь есть крупные месторождения железных руд, слюды, апатитов, графита. К осадочному чехлу приурочены значительные запасы газа и нефти, а также каменного угля, алмазов, медных, никелевых руд и золота.

Алданский щит — это выступ кристаллического фундамента в пределах Сибирской платформы. Он локализован в её юго-восточной части и совпадает в рельефе с Алданским нагорьем и Становым хребтом. На юге и западе щит граничит с областью горообразования через систему глубинных разломов. На северо-востоке он перекрыт мощным чехлом осадочных отложений кембрийского возраста.

По отложениям (этажам) древнего фундамента Алданского щита можно проследить за эволюцией земной коры в целом. Так, в самом нижнем ярусе залегают гнейсы, сланцы, мрамор и гранулитовые кварциты. Следующий этаж заполнен осадочно-вулканогенными породами, зонально метаморфизованными. Верхний этаж представлен мощными отложениями обломочных и вулканогенных пород, а также крупными интрузиями.

В разные геологические эпохи тектонические процессы в Алданском щите много раз активизировались. Это случалось в палеозое, среднем мезозое и кайнозое. Это одна из отличительных особенностей данного кристаллического щита.

С территорией Алданского щита связаны месторождения многих полезных ископаемых. Так, здесь обнаружены и разведаны значительные запасы железных и медных руд, слюды, апатитов, кимберлитов, каменного угля, золота, а также различных полудрагоценных камней.

Восточно-Европейская платформа — одна из крупнейших и самых стабильных платформ современной земной коры. Она простирается от Скандинавского полуострова до Уральских гор, занимая почти всю Северную и Восточную Европу.

В её структуре выделяются два мощных выхода кристаллического фундамента — Украинский и Балтийский щит. Здесь на поверхность во многих местах выходят древние горные породы — преимущественно граниты и кварциты. Местами они образуют высокие скалы, обнажения и очень живописные каньоны. В пространстве между этими щитами расположены Белорусская и Воронежская антеклизы.

Фундамент платформы сложен магматическими и метаморфическими горными породами докембрийского возраста, которые густо изрезаны глубинными тектоническими разломами. Восточно-Европейская платформа сформировала свой фундамент в позднем протерозое. Чехол платформы состоит из слабодеформированных осадочных и вулканических пород разного геологического возраста.

В пределах Восточно-Европейской платформы разведаны богатейшие месторождения различных полезных ископаемых. Одни из них связаны с фундаментом данной геологической структуры, другие — с её осадочным чехлом.

К местам выхода на поверхность фундамента платформы приурочены огромные залежи железных руд (Кривбасс, Курская магнитная аномалия, Кременчугский бассейн и другие), меди, титана, никелевых руд и апатитов. С осадочным чехлом платформы связаны месторождения природного газа (Волгоуральская нефтегазоносная провинция, Днепровско-Донецкая впадина и другие), каменного и бурого угля (Донбасс, Подмосковье), фосфоритов, бокситов и различного строительного сырья (известняк, мрамор, доломиты и т. д.).

Украинский кристаллический щит — это выступ фундамента Восточно-Европейской платформы на её юго-западной окраине. Он протянулся на тысячу километров (в пределах Украины и частично Белоруссии) от реки Горынь на севере до берегов Азовского моря на юге. На карте ниже он отмечен желтым цветом.

Максимальная ширина Украинского щита составляет 250 километров. Общая площадь его поверхности — примерно 135 тысяч квадратных километров.

Украинский щит сложен в основном магматическими и метаморфическими породами архейского возраста (это гнейсы, граниты, амфиболиты, мигматиты и прочие). Во многих местах эти кристаллические породы обнажаются, образуя красивейшие скалы, пороги и каскады на равнинных реках.

К выступам фундаментов древних платформ, как известно, приурочены рудные полезные ископаемые. И Украинский щит здесь — не исключение.

В пределах этой геологической структуры разведаны крупные запасы железных руд (Криворожский бассейн), урановых руд (Желтоводское и Терновское месторождения), циркониевых руд (Вольногорское месторождение), драгоценных и полудрагоценных камней, строительного сырья (в частности, в Житомирской и других областях Украины добывают гранит высочайшего качества). По общему минерально-ресурсному потенциалу Украинскому щиту практически нет равных как в Европе, так и в мире.

Встречаются на этом щите также полезные ископаемые осадочного типа. Их месторождения приурочены к незначительным по мощности (не более 50 метров) участкам чехла. В первую очередь, это бурый уголь Днепровского бассейна, а также марганцевые руды Никопольского бассейна.

Изучение строения земной коры входит в круг задач, которые ставит перед собой наука география. Щиты — это структурные элементы древних платформ Земли. К ним, как правило, приурочены мощные месторождения рудных полезных ископаемых и полудрагоценного камня.

Алданский щит, а также Украинский — это самые крупные кристаллические выступы фундаментов на континенте Евразия. Первый из них расположен в России, в пределах Сибирской платформы, а второй — в Украине, на Восточно-Европейской платформе.

источник

Разнообразие условий, в которых происходило образование полезных ископаемых, привело к их неравномерному размещению по территории Земли. Однако определенная закономерность в их распределении все же существует.

Основная закономерность — осадочные полезные ископаемые расположены в чехлах платформ, рудные полезные ископаемые — в районах складчатых поясов.

Руды образовались в основном из магмы и выделяющихся из неё горячих водных растворов. Магма подымалась из недр Земли по разломам и застывала в толще горных пород на различной глубине. Обычно внедрение магмы происходило в периоды активных тектонических движений, поэтому рудные полезные ископаемые связаны со складчатыми областями гор. На платформенных равнинах они приурочены к нижнему ярусу — складчатому фундаменту.

Разные металлы имеют различную температуру плавления. Следовательно, от температуры магмы, внедрившейся в пласты горных пород, зависит и состав рудных скоплений.

Крупные скопления руд имеют промышленное значение. Их называют месторождениями.

Группы близко расположенных месторождений одного и того же полезного ископаемого называют бассейнами полезных ископаемых.

Богатство руд, их запасы и глубина залегания в разных месторождениях неодинаковы. В молодых горах многие месторождения находится под толщей смятых в складки осадочных пород и обнаружить их бывает трудно.

При разрушении гор скопления рудных полезных ископаемых постепенно обнажаются и оказываются близ поверхности земли. Здесь их добывать легче и дешевле.

К древним складчатым областям приурочены месторождения железных руд (Западный Саян ) и полиметаллических руд (Восточное Забайкалье) , золота (нагорья Северного Забайкалья) , ртути (Алтай) и др.

Особенно богат разнообразными рудными ископаемыми, драгоценными и полудрагоценными камнями Урал. Здесь находится месторождение железа и меди, хрома и никеля, платины и золота.

В горах северо-восточной Сибири и Дальнего Востока сосредоточены месторождения олова и вольфрама, золота, на Кавказе — полиметаллические руды.

На платформах рудные месторождения приурочены к щитам либо к тем частям плит, где мощность осадочного чехла невелика и фундамент подходит близко к поверхности. Здесь расположены бассейны железных руд: Курская Магнитная Аномалия (КМА) , месторождение Южной Якутии (Алданский Щит) . На Кольском полуострове находятся месторождения апатитов — важнейшего сырья для производства фосфорных удобрений.

Однако для платформ наиболее характерны ископаемые осадочного происхождения сосредоточенные в породах платформенного чехла.

Преимущественно это нерудные минеральные ресурсы. Ведущую роль среди них играют горючие ископаемые: газ, уголь, горючие сланцы.

Они образовались из остатков растений и животных, накопившихся в прибрежных частях мелководных морей и озёрно-болотных условиях суши.

Эти обильные органические остатки могли накопится лишь в достаточно влажных и теплых условиях, благоприятных для повышенного развития растительности.

Крупнейшими угольными бассейнами России являются:

  • Тунгусский, Ленский, Южно Якутский (средняя Сибирь)
  • Кузнецкий, Канско-Ачинский (в краевых частях гор Южной Сибири)
  • Печорский, Подмосковный (на Русской равнине)

Месторождения нефти и газа сосредоточены в приуральской части Русской равнины. От побережья Баренцева до Каспийского моря, в Предкавказье.

Но самые крупные запасы нефти — в недрах центральной части Западной Сибири — Самотлор и др. газа — в северных её районах (Уренгой, Ямбург и др. )

В жарких засушливых условиях в мелководных морях и прибрежных лагунах происходило накопление солей. В Предуралье, в Прикаспии и в южной части Западной Сибири имеются их крупные месторождения.

Месторождения руд черных и цветных металлов, золота, алмазов приурочены к выходам кристаллического фундамента древних платформ.
Месторождения нефти, углей, природного газа приурочены к мощным осадочным чехлам платформ, предгорным прогибам, шельфовым зонам. Руды цветных металлов так же встречаются в складчатых областях.

источник

ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ. Полезные ископаемые, которые приурочены к четвертичным отложениям, можно разделить на несколько генетических групп

Полезные ископаемые, которые приурочены к четвертичным
отложениям, можно разделить на несколько генетических групп.
Это разнообразные россыпи, руды осадочного происхождения, нерудные полезные ископаемые, горючие ископаемые, а также под.земные воды и лед. Среди россыпных месторождений известны
как аллювиальные, так и прибрежно-морские. Среди них наиболее
важны золото, платина, ‘касситерит, алмазы, ильменит, циркон,
рутил. Большое значение имеют бобовые железные рудыозерно•болотного и озерного происхождения, прибрежно-морские фосфоритовые конкреции, залежи глауконита и особенно железомарганцевые и меднованадиевые конкреции, скопления которых широко распространены в глубоководных областях Мирового океана.

В экваториальной и во влажно-тропической областях продолжают формироваться коры выветривания, среди которых наибольшее значение имеют латеритные покровы. Металлоносные
коры выветривания формируются в экваториальном, тропическом
и субтропическом поясах. В них концентрируются залежи кобальта, никеля, меди, марганца, а также разнообразные огнеупорные

Из неоудных полезных ископаемых наибольшее значение имеют гравийники, используемые в строительстве, стекольные и формовочные пески, бентонитовые и диатомовые глины, сера, каменная и калийные соли, бораты, крупные запасы лигнита и торфа.

Подземные воды, заключенные в четвертичных аллювиальных
и пролювиальных отложениях и в межморенных горизонтах, служат главным источником чистой воды. Подземные льды и многолетнемерзлые породь» используются в качестве естественных холодильников.

Со времени более 4,5 млрд лет назад, когда из скопления
твердых обломков, пыли и газа родилась наша планета Земля, и
до ее превращения в обитель современного человечества онаирошла длительный и сложный ‘путь развития. Родившись холодной,
Земля довольно быстро разогрелась до состояния плавления или
близкого к нему в своей приповерхностной части благодаря теплу, выделявшемуся ‘при соударении планетезималей, при распаде
естественно-радиоактивных элементов (многие из них вскоре исчезли), а после появления рядом с Землей Луны — благодаря
лунным твердым приливам. Лишенная вначале как атмосферы, так
и гидросферы, Земля испытывала до 3,8 млрд лет метеоритную
бомбардировку, одним из следствий которой — падения метеорита
размером с Марс — мог быть выброс материала, сконденсировавшегося за пределом земного тяготения в наш вечный спутник —
Луну. Другим следствием этой бомбардировки должно было являться образование кратеров, заполнявшихся базальтовой лавойпродуктом плавления разогретого приповерхностного слоя Земли.
Одновременно стала протекать дегазация земных недр, приведшая к началу создания ее атмосферы, а затем, после 4 млрд лет,
и гидросферы, за счет конденсации водяного пара. Первичный
состав атмосферы отличался от современного отсутствием или низким содержанием кислорода и повышенным — углекислоты.

С рубежа 4 млрд лет начинается собственно геологическая
эволюция Земли, проявляются все характерные для нее эндогенные и экзогенные процессы. За счет переплавления первичной базальтовой коры при участии поступавших из мантии флюидов возникают первые острова сиаля — протоконтиненты, возвышающиеся над еще очень мелководным океаном. Их слагали «серые гнейсы» — гранитоиды, отличавшиеся от более поздних «нормальных»
гранитов преобладанием в их составе натрия над калием. За счет
размыва этих островов суши образуются первые осадочные — обломочные — породы, обнаруженные в Гренландии (возраст 3,8
млрд лет).

На рубеже около 3,5 млрд лет происходят новые важные события. Судя по появлению магнитного поля, у Земли возникает
жидкое ядро, куда начинает стекать железо из вышележащей
мантии. Это магнитное поле создает защитный экран от космического излучения, что способствует возникновению жизни, первыеследы которой обнаруживаются в южноафриканских породах того’
же возраста (если не считать менее достоверные признаки в породах Гренландии). На самом раннем этапе возникновение органических молекул из неорганической материи могло происходить

именно под воздействием жесткого космического излучения. Место и условия зарождения живого вещества пока представляют нерешенную проблему; по наиболее правдоподобной версии, оно могло появиться вблизи горячих источников — гидротерм на дне все
еще мелкого океана. Впрочем, наиболее ранние организмы были
представлены бактериями.

Архейский зон характеризовался, далее, интенсивным наращиванием континентальной коры, все более приближавшейся по
составу и мощности к современной. Происходило это за счет обрастания протоконтинентальных серогнейсовых ядер материалом
зеленокаменных поясов, включавшим коматиит-базальтовую кору
океанского или близкого-оК ней типа и породы, близкие или даже
тождественные породам более молодых вулканических островных
дуг, как вулканические известково-щелочного состава, так и гранитоиды, в позднем архее уже отличавшиеся преобладанием калия над натрием. Внутрикоровые процессы метаморфизма и гра«итизации привели к разделению континентальной коры на обезвоженную и более глубоко, в гранулитовой фации метаморфизованную нижнюю и гранитизированную, метаморфизованную в амфиболитовой и зеленосланцевой фациях, верхнюю кору.

В конце архея (2,8—2,6 млрд лет ‘назад) началась стабилизация континентальной коры, и к началу протерозоя она образовала,
вероятно, единый массив — суперконтинент Пангею 0, который
вместил от 60 до 80%, по разным представлениям, объема коры
современных континентов. На другой стороне планеты ему уже
должен был противостоять еще больших размеров океан — Панталасса, возможно, возникший вокруг кратера на месте падения
того гигантского метеорита, который был причиной образования
Луны.

Первая половина раннего протерозоя (до 2,2 млрд лет) прошла
под знаком господства геакратических условий, на фоне которых началось раскалывание созданного в архее суперконтинента

но-морских отложений, в ряде районов прослоенных покровами
платобазальтов и пронизанных дайками и силлами (трапповая
ассоциация). Среди этих отложений впервые появляются породы
ледникового происхождения.

В течение раннего протерозоя развитие органического мира
выразилось в широком распространении синезеленых водорослей,
продукты жизнедеятельности которых в виде известковых пленок
составили строматолитовые постройки, местами достигающие мощности в сотни метров (первые строматолиты появляются еще в
позднем архее). Фотосинтезирующая деятельность этих водорослей привела к изменению состава атмосферы, с появлением в ней
все более заметных количеств свободного кислорода, что, в свою
очередь, стимулировало дальнейший расцвет органического мира-

Превращение протогеосинклиналей в конце раннего протерозоя
в складчато-надвиговые системы привело к сращиванию протоплатформ и восстановлению сплошности континентальной коры и к
образованию нового суперконтинента, новой Пангеи—ПангеиI,
а
также к опеснению морских вод снова в Панталассу. Мозаика из
глыб архейской коры и складчатых раннепротерозойских систем
составила в дальнейшем основу кристаллического фундамента
древних платформ, таких, как Восточно-Европейская, Сибирская,
Китайско-Корейская и др.

Читайте также:  Полезные ископаемые урала кратко

История Земли в раннем-среднем рифее (1/7—1,0 млрд лет
назад) в какой-то мере повторила раннепротерозойскую. В раннем рифее еще полностью господствовали геократические уело.
вия, хотя и началось раздробление созданного в конце раннего протерозоя суперконтинента — Пангеи I. В среднем рифее этот процесс усилился; но в его конце, в гренвильскую эпоху тектогенеза,
большая часть подвижных систем отмерла и суперконтинент снова
восстановил свою сплошность.

Развитие органического мира в раннем-среднем рифее продолжало прогрессировать Наряду с прокариотами — бактериями и
синезелеными водорослями — появились эукариоты, представленные простейшими одноклеточными организмами (первое появление эукариот может относиться еще к середине раннего протерозоя, около 2,0 млрд лет).

Начало позднего рифея характеризуется новым усилением-деструкции суперконтинента и соответственно заложением бассейнов с корой океанского или переходного к нему типа. В пределах
будущей Западной Гондваны этот процесс довольно скоро, уже в
венде, ^сменился сжатием, складчато-надвиговыми деформациями
осадочно-вулканогенного выполнения, метаморфизмом и гранитизацией, которые частично продолжились и в кембрии. А к началу
ордовика уже была сформирована Гондвана, просуществовавшая
затем в основной своей части в течение всего палеозоя и раннего
мезозоя. Несколько иначе развивались события в пределах будущей Лавразии, где байкальский тектогенез конца протерозоя не
привел к восстановлению ее единства и уже в начале кембрия (местами несколько позднее) сменился еще более энергичной деструк-

цией континентальной коры с заложением палеозойских океанов —
Палеоатланздческого (Япетуса), Палеотетиса, Палеоазиатского.

К числу этих океанов по новым данным следует добавить ж
Тихий океан, который образовался за счет отделения Восточной
Гондваны от Северной Америки. Лишь затем Восточная Гондвана
примкнула к Западной, вызвав закрытие Мозамбикского океана.

Во второй половине позднего рифея и в раннем венде отмечены следы нескольких ледниковых эпох, широко проявленных по»
всему земному шару, в том числе и на территории нашей страны.

В развитии органического мира поздний рифей ознаменовался
массовым появлением многоклеточных организмов, пока еще бесскелетных; они достигли максимального разнообразия в концеэона, в позднем венде — это знаменитая эдиакарская фауна, обнаруженная у нас на Белом море и в Сибири, на р. Оленек.

Еще более ярко выраженный перелом в развитии органического мира отмечен на рубеже венда и кембрия, когда произошло появление скелетных организмов — трилобитов, моллюсков и др.
Этот перелом и дал основание для разграничения протерозойского
и фанерозойского эонов. Причины этого события еще служат предметом догадок. К ним может относиться возникновение озонового»
экрана, распад суперконтинента с образованием протяженных
шельфов — областей высокой подвижности воды, требовавшей создания защитного панциря для морских животных. Интересно, что
на первых порах широкое распространение получили не карбонатные, а фосфатные раковины.

Так или иначе, в начале палеозоя обозначились контуры как
Гондваны, так и северных (в современных координатах) континентов—Северной Америки, Восточной Европы, Сибири, Китая—Кореи и разделявших их упоминавшихся выше океанов. Ширина этих
океанов измерялась тысячами километров (по палеомагнитнымданным), а глубина — тысячами метров. Продолжительность их
существования была различной; раньше всего замкнулся Япетус,.
уже к началу девона, что сопровождалось каледонской складчатостью и горообразованием и привело к объединению Северной
Америки и Восточной Европы (Балтики) в Еврамерику, или Лавруссию, образовалась «суша древнего красного песчаника». Палеотетис в своей западной половине (юг Северной Америки, Западная Европа, северо-западная Африка) просуществовал до середины карбона. В позднем карбоне и перми выполняющие его осадки
и вулканиты были смяты в складки, нарушены надвигами, вовлечены в шарьяжи, частично метаморфизованы и пронизаны интру-^
зиями гранитов, и в итоге превратились в горный пояс Аппалачей
в Америке, герцинид (варисцид) в Европе. Этот пояс спаял Лавруссию с Гондваной и тем самым положил начало существованию
новой Пангеи — Пангеи II.

Аналогичные события с некоторым опозданием развернулись
восточное, в частности на Кавказе, Урале, Тянь-Шане, Алтае. Они
привели в конце палеозоя к почти полному — кроме Амуро-Охотского и Восточномонгольско-Южнодунбэйского сегментов и нес-

кольких остаточных бассейнов на западе — замыканию Палеоазиатского океана. В связи с этим Сибирский континент сомкнулся с

Лавруссией на западе, с Таримским и Китайско-Корейским континентами на юге, образовав суперконтинент Лавразию. Что касается Восточного Тетиса, то его северная окраина тоже оказалась
вовлеченной в герцинский орогенез, а глубоководная область с
океанской корой сместилась к югу — Палеотетис сменился Мезотетисом.

Периферия современного Тихого океана в течение палеозоя
тоже неоднократно испытывала импульсы сжатия, деформаций и
горообразования. В девоне они затронули в основном восток Австралии и юго-восток Китая, в начале карбона — Анды и частично
Северо-Американские Кордильеры, в позднем палеозое — снова
восток Австралии и Анды, в небольшой степени Японские острова
я Кордильеры Северной Америки. Лишь некоторые из перечисленных областей — юго-восточный Китай и Восточная Австралия —
были в результате выключены из дальнейшего активного развития, и то в отношении территории Китая высказываются довольно
обоснованные сомнения, и такая длительная и устойчивая подвижность — характерная черта Тихоокеанского кольца.

В палеозое Гондвана, оказываясь в приполярной области Южного полушария, дважды была охвачена покровным оледенением. Первое — позднеордовикское — было менее продолжительным и покрыло меньшую площадь; второе — позднепалеозойское — состояло из нескольких ледниковых эпох и отличалось обширным распространением.

Уровень океана в палеозое подвергался значительным колебаниям. Крупные его повышения — трансгрессии — наблюдались в
среднем ордовике, раннем силуре, среднем-позднем девоне, среднем
карбоне, причем максимальными были ордовикская и силурийская,
а регрессии характеризуют начало кембрия, конец ордовика, поздний силур — ранний девон и поздний карбон и пермь; последняя
регрессия была наиболее значительной и совпадала с покровным
оледенением.

Органический мир претерпел в палеозое серьезные изменения.
В ордовике — силуре появились рыбы — первые позвоночные, в
карбоне — амфибии, т. е. начался выход животных на сушу. Еще
раньше это произошло с растениями — в силуре—девоне, а в
позднем девоне — карбоне возник уже мощный растительный покров и началось широкое углеобразование. Его намного опередило
нефтеобразование, поскольку промышленные, залежи нефти известны уже в рифее; их источником явились, очевидно, морские
растения—водоросли и др.

В начале мезозоя континентальная кора оставалась собранной
в единый суперконтинент — Пангею II, продукт соединения Лавразии и Гондваны. На востоке эти континентальные массы разделял замыкавшийся в центре современного Средиземноморья океан Тетис, широко открывавшийся в противоположном направлении
и сливавшийся с Тихим океаном. От последнего на запад отходи-

ли меньшего масштаба заливы с океанской корой — Южно-Анюйский, Монголо-Охотский и др.

В течение триаса, особенно со среднего триаса, и первой половины юры Пангея испытывала нарастающую деструкцию, пронизываясь все более густой сетью континентальных рифтов. Во второй половине юры, с батского века, началось раскалывание суперконтинента с образованием Центральной Атлантики и повторным
раскрытием Западного Тетиса, соединившегося на западе с Тихим океаном и разделившего Лавразию и Гондвану, а также западной и северо-восточной впадин Индийского океана. Одновременно подвергалось обновлению ложе Тихого океана, более древняя кора которого была полностью поглощена в периферических
зонах субдукции.

В раннем мелу деструкция Пангеи II прогрессировала. Произошло, начиная с юга, раскрытие Южной Атлантики и в середине альба ее соединение с Центральной Атлантикой, которая к
тому времени продвинулась на север, отделив Иберийский полуостров от Ньюфаундленда. Африка отделилась не только от Южной Америки, но и от Индостана и Антарктиды, а Индостан, в
свою очередь, от Австралии и Антарктиды.

На рубеже раннего и позднего мела раскрытием Канадской
котловины было положено начало образованию Северного Ледовитого океана (отдельные остаточные впадины здесь могли сохраниться с палеозоя).

В позднем мелу продолжалось разрастание Атлантики к северу, достигшее Гренландско-Фарерского порога и приведшее также
к отделению Гренландии от Северной Америки, и расширение Индийского океана с продолжением быстрого дрейфа Индостана к
северу, в направлении Лавразии. Во второй половине эпохи Австралия отделилась от Антарктиды и стала смещаться к северо-востоку, а в Тихом океане роль основной оси спрединга перешла к Восточно-Тихоокеанскому поднятию.

Во многом противоположные тенденции наблюдались в Тетисе.
На востоке уже с конца триаса происходило наращивание северной, активной окраины океана за счет причленения последовательно откалывавшихся от Гондваны и перемещавшихся к северу
континентальных глыб — микроконтинентов (во многом аналогичный процесс происходил в палеозое в западной части Палеотетиса). Одновременно в тылу этих микроконтинентов раскрывались новые бассейны с океанской корой и, таким образом, продолжалось смещение основной оси океана к югу, отмеченное уже для
конца палеозое. Усиление наращивания северной окраины Тетиса
(в Юго-Восточной Азии, восточной — в современных координатах) шло отдельными импульсами — в конце триаса (раннекиммерийская эпоха), в конце юры (позднекиммерийская эпоха), в середине мела.

В западной части Тетиса удаление Африки — Аравии от Лавразии в конце юры и особенно мелу сменилось их сближением.
Здесь также происходило столкновение с лавразийской окраиной

микроконтинентов гондванского происхождения —Адриатического,
Родопского и других — в те же в общем эпохи — позднекиммерийскую и австрийскую.

Разрастание континентов за счет океана имело место во второй половине мезозоя и в западном полушарии Земли, но протекало несколько по-разному в разных сегментах Тихоокеанского
кольца. На северо-западе и западе происходило причленение к
континенту как ранее отколовшихся от него микроконтинентов»
так и вулканических дуг и постепенное преобразование азиатской
окраины в аналог современной южноамериканской, андской окраины, характеризующейся непосредственным контактом океана с
материком через глубоководный желоб и сейсмофокальную зону и
развитием на краю материка вулканоплутоннческого пояса. Сходный процесс шел и по другую, американскую сторону северной
половины Тихого океана, где к краю континента последовательно
причаливали вулканические дуги, внутриокеанские поднятия, континентальные обломки. При этом они перемещались, как и на
азиатской окраине, не только в поперечном по отношению к берегу континента направлении, но и в продольном, с юга на север, как
свидетельствуют фаунистичеокие остатки и палеомагнитные данные. Как и на востоке, процесс развивался отдельными импульсами, в общем синхронными с азиатскими.

На южноамериканской периферии океана, в ее северной части,
тоже шло причаливание вулканических дуг к континенту, а в центральной и южной, где такая дуга с самого начала заложилась.
на краю континента, — ее преобразование в вудканоплутонический
пояс. Это произошло в Южных Андах уже в конце юры, в Центральных —: в конце мела, и к началу кайнозоя подобный пояс
протянулся вдоль всего западного края Южной Америки. На юге
он продолжался в Западную Антарктиду (Антарктанды).

Несколько по-другому развивались события в юго-западном
сегменте Тихоокеанского кольца, в обрамлении Австралии. Здесь
в первой половине мезозоя существовал краевой вулканоплутонический пояс, возникший еще в конце палеозоя. В конце юры —
начале мела имело место существенное наращивание континентальной коры, особенно в Новой Зеландии, но в конце мела началась, деструкция, приведшая к образованию впадины Тасманова
моря.

Уровень Мирового океана в начале мезозоя был близок к современному или даже ниже него (рэт-байос), но затем стал постепенно повышаться и достиг максимальных отметок в позднем мелу, в сеноне, когда он более чем на 500 м превысил современный,
вызвав одну из самых крупных в фанерозое трансгрессий.

Климат Земли в течение всего мезозоя оставался теплым;

оледенения отсутствовали. Однако чередовались периоды увлажнения (гумидизации) и усиления засушливости (аридизации). К
последним относятся почти весь триас (вслед за пермью), поздняя
юра и первая половина раннего мела, к первым — ранняя и средняя юра, вторая половина раннего и поздний мел. Совершенно ес-

тественно, что периоды аридизации были благоприятны для накопления красноцветов и солей, а периоды гумидизации — сероцветов и углей.

Животный мир мезозойской суши отличался господством пресмыкающихся и земноводных, появлением птиц и, наконец, примитивных млекопитающих. В морях были широко распространены
головоногие, а с конца юры начался расцвет фораминифер и на—
нопланктона — кокколитофорид, создавших мощные толщи мела,.
столь характерные для этой системы. В середине раннего мела
серьезные изменения претерпел растительный мир — появились
покрытосеменные растения, вскоре завоевавшие значительные
пространства суши, которая впервые покрылась травяным покровом.

Однако на рубеже мела и палеогена, мезозоя и кайнозоя животный мир претерпел самый крупный кризис с начала кембрия.
Многие группы животных — от огромных динозавров до мелких
фораминифер — исчезли на этом рубеже, и их место заняли другие организмы, прежде всего млекопитающие, среди фораминифер — крупные нуммулитиды и т. д. Причины этого кризиса, как,
впрочем, и предыдущих, остаются неразгаданными; основными
конкурирующими гипотезами являются столкновение ‘Земли с
крупным астероидом и резкое усиление вулканической деятельности.’Как то, так и другое могло явиться причиной возникновения крупных пожаров, резкого увеличения содержания углекислоты в атмосфере, увеличения температуры-морской воды и т. д.

С рубежом мела и палеогена совпадает также увеличение
тектонической активности в ряде регионов земного шара и особенно по периферии Тихого океана, прежде всего в поясе СевероАмериканских Кордильер (откуда пошел термин «ларамийская
эпоха орогенеза»), а также Анд, и по другую сторону океана на
Северо-Востоке России (Корякия, Камчатка, Сахалин). Постепенно снижаясь, эта активность продолжалась до эоцена включительно-

Между тем в будущем Альпийоко-Гималайском поясе именно»
к ‘концу эоцена приурочен пик тектонических деформаций. Навостоке он был непосредственно связан со столкновением Индии»
и Евразии, западнее происходили дальнейшее сближение Африки.
частью которой все еще являлась Аравия, с Евразией и столкновение между собой разделявших их микроконтинентов. Некоторыехребты Альпийско-Гималайского пояса — сами Альпы, Пиренеи^
Балканы, Малый Кавказ, горные цепи севера Ирана, Белуджистана и, наконец, Гималаи — превратились в это время в горные
сооружения. Тетис как единый крупный океан, отделявший Гондвану от Лавразии, к концу эоцена перестал существовать; на
востоке Индостан вошел в состав Евразии, а на западе, в Европеи Передней Азии, его реликтами явились современное Средиземное море, точнее моря Ионическое и Леванта, а также Паратетис,
простиравшийся вдоль северной периферии Альп и Карпат, включавший Паннонский, Валахский и Понто-Каспийокий бассейны.

Крупные изменения претерпела в палеогене и общая конфигу-

Читайте также:  Полезные свойства соленой селедки

рация материков и океанов. Уже в палеоцене раскрылся Нор.
вежско-Гренландский бассейн, а в конце палеоцена—начале
эоцена — Евразийский бассейн Северного Ледовитого океана.
Единая ось спрединга протянулась от моря Лаптевых до крайнего
юга Атлантики; она полностью отделила Евразию от Северной
Америки, Гренландии и подводного хребта Ломоносова. В Индийском океане уже в конце мела произошло отделение Мадагаскара
и Сейшельских островов от Индостана с формированием современного Аравийско-Индийского хребта. Зато в северо-восточной
части океана отмерла ось спрединга между Индией и Австралией,
и они вошли в состав единой Индо-Австралийской плиты. В середине олигоцена Антарктида стала отделяться от Южной Америки с образованием в промежутке глубоководного бассейна моря
Скотия. Все эти изменения привели к тому, что распределение
материков и океанов на лике Земли стало весьма близким к современному.

Этому способствовало продолжавшееся формирование системы окраинных морей и вулканических дуг в юго-западной части
Тихого океана. На северном продолжении оси спрединга Тасманова моря в эоцене раскрылось Коралловое море, сформировалась
Меланезийская вулканическая дуга. Тогда же образовались море
Сулавеси, Филиппинский архипелаг и к востоку от него началось
образование Филиппинского моря, а в среднем олигоцене между
Филиппинами и Азиатским материком стало раскрываться ЮжноКитайское море.

Климат в палеогене оставался теплым и довольно влажным —
пальмы продолжали расти на Шпицбергене и в Гренландии.Но в
олигоцене началось похолодание, связанное с образованием ледникового щита Антарктиды.

Уровень океана в палеогене был заметно ниже позднемелового,
несмотря на отдельные трансгрессии, но вплоть до середины
олигоцена все еще выше современного. В позднем олигоцене произошло его исключительно резкое понижение, до отметки около
400 м ниже современного, и возвращение к последнему лишь в
середине миоцена.

В миоцене продолжалось формирование Альпийско-Гималайского горного пояса — возникли складчато-надвиговые сооружения
Апеннин, Карпат, Динарид, Большого Кавказа, Копетдага. Но
процесс горообразования не ограничился рамками бывшего Тети

Дата добавления: 2016-04-06 ; просмотров: 656 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Главными полезными ископаемыми являются нефть и газ. Залежи нефти приурочены к терригенным породам живетского яруса в Ухтинском нефтедобывающем районе. Месторождения нефти Ухтинское, Ярегское и др. На Ярегском месторождении нефть добывается шахтным способом.

В базальных горизонтах нефтеносной толщи Ярегского месторождения содержатся титановые руды. Проектируется добыча диоксида титана.

Крупные месторождения нефти открыты в Усинском районе. Усинское месторождение.

В девонских и каменноугольных отложениях Среднего Тимана выявлены месторождения бокситов(Верхневотыквинское и Верхнешугорское месторождения).

В нижнемеловых отложениях открыты залежи фосфоритов.

Сибирская платформа обладает архейско-нижнепротерозойским метаморфическим фундаментом, которыйна большей части территории покрыт рифейско-вендским чехлом. На северо-востоке и востоке платформа граничит с Верхояно-Чукотской мезозойской складчатой областью, от которой она отделяется Предверхоянским краевым прогибом и Сета-Дабанским антиклинорием Южно-Верхоянской складчатой системы. На юго-востоке к платформе примыкает Монголо-Охотская складчатая система. С юго-востока, юго-запада и запада платформу дугообразно огибает Урало-Монгольский подвижный пояс. Западная граница платформы проводится вдоль долины Енисея и западного края Турухано-Норильской зоны. Северная граница проводится по северной границы Усть-Енисейско-Хатангского прогиба и далее к востоку до дельты Лены по Ленно-Анабарскому прогибу.

Юго-восточную часть платформы занимает обширный выступ архейско-нижнепротерозойского фундамента– Алдано-Становой щит. В северной части платформы Анабарский массив. Верхнепротерозойско-фанерозойский платформенный чехол слагает огромную Ленно-Енисейскую плиту. Нижняя часть разреза в основном приурочена к ряду авлакогенов, заложенных в рифее и частично активизировавшихся в девоне.

Алдано-Становой щитимееет сложный рельеф поверхности фундамента, обусловленный блоковыми подвижками в мезозое и кайнозое с внедрением многочисленных мезозойских интрузий. С востока, юга и запада щит граничит по разломам с протерозойскими, палеозойскими и мезозойскими складчатыми зонами, но в его юго-западной части граница щита маскируется телами палеозойских и мезозойских гранитоидов и становится неопределенной.

Северная граница щитаскрывается под рифейскими или вендско-кембрийскими отложениями чехла. Щит состоит из двух сводово-глыбовых поднытий– Алданского на севере и Станового на юге, разделенных широкой 50-100км субширотной Северо-Становой зоной разломов. На большей части площади Алданского поднятия поверхность метаморфического фундамента воздымается до 1-2км, а в ряде осложняющих его структуру впадин она погружается до отметок минус 2-4км. Вдоль южного края поднятия вытянута субширотная цепочка грабенообразныхвпадин-Чульманская, Токкинская, выполненная континентальными отложениями юры и нижнего мела мощностью до 5км.

На западную окраинуАлданского поднятия в конце неогена-антропогена была наложена грабенообразная Чарская впадина.

В Становом поднятии фундамент приподнят до 1,5-2км. Его юго-западная часть разбиты разломами на ряд горстов и узких асимметричных грабенов.

Анабарский выступархейского фундамента в северной части платформы на протяжении венда и кембрия участвовал в погружении, общем со смежными частями Ленно-Енисейской плиты, и лишь позднее стал испытывать воздымание, приобретя морфологические признаки щита.

На северо-восточном Крыме платформе находится Оленекский выступ нижепротерозойского фундамента.

Восточная часть плиты. Лежащая к северу от Алдано-Станового щита–Алданская моноклиза–в основнрм характеризуется очень пологим погружением к северу нижних горизонтов платформенного чехла,сложенныхвендом и кембрием, до глубины 1-2км.

На северо-востоке платформы находится обширная и сложно построенная Анабарская антеклиза. Вее северной частирасположены Анабарскийи Оленекский выступы фундамента.

В южной части платформы вдоль ее границы с Байкальской областью простирается широкая 25-300км полоса распространения кембрийских и ордовикских отложений–Ангаро-Ленская ступень. Фундамент в ней залегает на глубинах от 1,5 до 3км. В Тунгусской и Тасеевской синеклизах–опущен ниже 4-8км.

Вкрайней юго-западной части Ангаро-Ленской зоны располагается выполненная юрскими угленосными отложениями неглубокая Иркутская впадина.

К западу от Ангаро-Ленской ступени располагается глубокая до 6-8км Тасеевская синеклиза. Она выполнена верхнерифейскими и вендскими отложениями молакового типа. В юго-западной части синеклизы– Канская впадина, в которой залегает континентальный девон, несогласно перекрытый угленосной юрой.

Самая обширная и своеобразная впадина Сибирской платформы – Тунгусская синеклиза. С востока синеклизу ограничивает Анабарская антеклиза, с запада Турухано-Норильская зона, а на севере она уходит подверхнемезозойский чехол Усть- Енисейско-Хатангской впадины. Кровля фундамента в южной части Тунгусской синеклизы опущена на глубины до 5-7км, а в северной до 8-12км. В основании чехла синеклизы предполагают существование ряда рифейских авлакогенов. Плитный комплекс включает отложения венда, кембрия (в том числе соленосные толщи нижнего кембрия), ордовика,нижнего силура, а в северо-западной части – также верхнего силура, девона и нижнего карбона.

Турухано-Норильская зонадислокаций, ограничивающая Тунгусскую синеклизу с запада, включается в состав древней Сибирской платформы условно. Возможно что она, как и сооружение Енисейского кряжа, принадлежит к северной части Енисейско-Присаянской складчатой области. Южная часть зоны выражена Туруханским антиклинальным поднятием, в ядре которогообнажается складчатый рифей, а на восточном крыле обнажаются несогласно перекрывающие его вендские и палеозойские отложения. На севере Туруханское антиклинальное поднятие расщепляется на Игарскую зону (западную), сложенную в ядре рифеем и восточную– Хантайско-Рыбинскую,сложенную породами от кембрия до Перми. Эти две зоны разделяет широкая Норильская синклиналь, выполненная нижнетриасовым трапповым комплексом.

В Усть- Енисейско-Хатангскойвпадине, отделяющей Сибирскую платформу от складчатого сооружения Таймыра, под маломощными четвертичными осадками залегают мощные до 3-5км меловые и юрские отложения. Восточным продолжением Усть-Енисейско-Хатангской впадины служит Анабаро-Ленская впадина, в которой юрско-нижнемеловой комплекс несогласно залегает на пермо-триасовом.

источник

Категории Геология | Под редакцией сообщества: Науки о Земле

Осадочный чехол – верхний структурный ярус платформы, сложенный обычно неметаморфизованными осадочными и вулканогенно-осадочными породами, глинами, глиняными сланцами, песчаными, вулканогенными и карбонатными горными породами[1]. Слой покрывает почти всю поверхность Земли. Мощность в глубоких впадинах достигает 20 — 25 км, в среднем — 3 км. магматические образования в нем, как правило, представлены породами трапповой формации. B основании осадочного чехла иногда присутствуют кислые вулканические образования (Aлданский щит и др.). Отложения осадочного чехла характеризуются пологим залеганием и небольшой мощностью; они сравнительно медленно изменяют свою мощность и фации по площади и осложнены лишь пологими структурами платформенного типа, таким образом, для пород осадочного чехла характерна слабая дислоцированность, сравнительно низкие плотности и небольшие изменения, соответствующие диагенетическим.

От нижнего структурного яруса (фундамента платформы) осадочный чехол обычно отделён поверхностью резкого регионального несогласия. Нередко между фундаментом и чехлом располагаются отложения промежуточного яруса, что особенно свойственно молодым платформам. B этом случае граница, разделяющая породы осадочного чехла от подстилающих образований, становится менее отчётливой. Ha древних платформах под плитным чехлом часто встречаются авлакогены — грабены, наложенные на фундамент. Сходные грабены входят в состав промежуточного яруса молодых платформ.

Выделяют осадочные образования (чехол) океанической и континентальной земной коры.

Осадочный чехол (слой) Земной коры континентального типа с поверхности покрывает дно морей и океанов[2].

Плотность осадков составляет около 2 г/см 3 . Скорость распространения сейсмических волн варьирует от 1,5 до 2,5 км/с. Образование осадочного слоя океанов происходит, главным образом, за счёт выноса осадочных веществ реками с континентов (19,5 млрд. т в год), собственного океанического осадконакопления (1,8 млрд. т в год) и вулканической деятельности (1,7 млрд. т в год). В меньшем масштабе осадочный материал поставляется в Мировой океан ледниками, морской абразией, деятельностью ветра.

Стратиграфический диапазон осадочного слоя океанической коры находится в интервале от позднеюрского (самые древние осадочные породы, вскрытые в океанах скважинами) до голоценового возраста. Распределение разновозрастных осадков на дне Мирового океана носит закономерный характер: в центральных районах располагаются наиболее молодые (современные) образования, а по мере приближения к континентам появляются всё более и более древние породы. Мощности слоя сильно варьируют. На участках крутого уклона дна (уступы материкового склона, склоны подводных поднятий и гор) осадки под действием силы тяжести соскальзывают, обнажая породы второго и третьего слоев. Однако на большей части океанического дна осадочный слой присутствует. Наименьшая мощность его наблюдается в пределах срединно-океанических хребтов. Обычно осадки (не более 100 м) заполняют карманы между горными пиками. На самих вершинах они, как правило, отсутствуют, иногда располагаясь на них в виде своеобразных шапок. Дно рифтовой долины, сложенное базальтовыми породами, покрыто тонким слоем преимущественно органогенных осадков. В пределах океанического ложа мощность осадочного слоя не превышает 500 м. Осадки распределены равномерно, возрастая до нескольких километров по направлению к континентам и в глубоководных желобах.

Аномально высокие мощности осадочного слоя установлены по перифериям океанов. Так, в пределах материковой окраины Атлантического океана выявлены мощные осадочные тела (линзы), вытянутые вдоль подножия континентального склона субпараллельно береговой линии. Мощность осадков превышает 10 км, их строение осложнено солянокупольной тектоникой. Столь же внушительные мощности осадочного слоя отмечаются и в котловинах окраинных морей Переходной зоны (Охотское, Японское и другие моря). В состав слоя входят глинистые, кремнистые и карбонатные глубоководные пелагические осадки. Ближе к континентам появляются примеси обломочного материала, сносимого с суши (гемипелагические осадки).

Степень деформированности осадочного слоя океанов изучена пока недостаточно. Обычно осадки выполняют неровности рельефа дна, залегая субгоризонтально. Однако во многих местах Мирового океана обнаружены складки, соляные и глинистые диапиры, разломы. Всё это свидетельствует о динамической обстановке в пределах осадочной толщи океанов.

Земная кора континентального типа представлена в пределах древних платформ. Платформами называются относительно устойчивые участки земной коры[3]. Они развиваются на месте консолидированных складчатых сооружений, возникших при замыкании геосинклиналей. Это обширные, преимущественно равнинные участки земной коры, часто неправильной многоугольной формы. Такая форма обусловливается крупными краевыми разломами, отделяющими платформы от смежных с ними подвижных геосинклинальных областей. Примерами в России являются Русская (Восточно-Европейская) и Сибирская платформы. Для платформ характерны следующие особенности.

B строении платформы выделяются два главных структурных яруса — нижний и верхний. Нижний ярус сформировался в геосинклинальный (доплатформенный) этап развития и состоит из сильно дислоцированных метаморфизованных горных пород, пронизанных интрузиями и глубокими разломами. Его называют фундаментом, складчатым основанием или цоколем платформы. Верхний ярус представляет собой осадочный платформенный чехол, сложенный согласно залегающими осадочными горными породами. Местами фундамент выступает на поверхность. Такие участки платформ называются щитами. Участки платформ, на которых фундамент погружен на глубину и покрыт всюду осадочным чехлом, именуют плитами.

Мощность осадочных пород платформенного чехла меняется плавно, постепенно и сравнительно небольшая — обычно до 2-5 км, т.е. в несколько раз меньше, чем в геосинклинальных областях.

Состав осадочных пород более или менее однообразен. В эпиконтинетальных платформенных морях накапливаются или карбонатные породы — известняки, доломиты, или мелководные песчано-глинистые отложения. Из полезных ископаемых здесь местами шло образование осадочных железных и марганцевых руд, фосфоритов, бокситов и др. В периоды регрессий на месте бывших морей накапливались континентальные отложения — озерные, аллювиальные, болотные, а в условиях аридного климата — эоловые и лагунные. С этими этапами континентального развития связано образование железных руд (в болотах и озерах), углей и солей.

Отмечается горизонтальное или почти горизонтальное залегание слоев осадочных горных пород, осложненное местами изолированными пологими кладками (прерывистая складчатость). Наиболее крупные структурные элементы платформ — синеклизы — это огромные пологие изометричные впадины — прогибы, занимающие обширные площади, достигающие в поперечнике сотни и даже тысячи километров. Они заполнены преимущественно осадочными породами и отличаются очень пологим падением слоев — первые метры на километр, что соответствует углу наклона в несколько минут. Примером является Московская синеклиза с центральной частью близ Москвы. Ее поперечное сечение (с севера на юг) достигает 1300 км, а падение слоев 2-2,5 м/км. Крупные пологие поднятия платформ называются антеклизами. Примером их являются белорусская и воронежская антеклизы. Кроме синеклиз и антеклиз, в пределах платформ встречаются желообразные тектонические впадины, линейно ориентированные и ограниченные глубинными разломами, протягивающиеся на многие сотни километров при ширине от десятков до 100-200 км. Эти впадины названы Н.С. Шатским авлакогенами (греч. авлакон — борозда). В них наблюдаются повышенная тектоническая активность, большие мощности осадочных пород (пример — Днепровско-Донецкая впадина). Из более мелких складчатых форм развиты валы, брахискладки, купола, флексуры.

  1. Волож, Ю.А., Шлезингер, А.Е., Юров, Ю.Г. Консолидированная кора (фундамент) и чехол: принципы выделения и геолого-геофизическая характеристика. Вестник ОГГГГН РАН, № 1(11). 2000 ↑ 1
  2. Гаврилов, В.П. Геотектоника. М., Изд-во «Нефть и газ». 2005. 368 с. ↑ 1
  3. Главные структурные единицы литосферы. Лекции. ↑ 1

Эта статья еще не написана, но вы можете сделать это.

источник

Источники:
  • http://fb.ru/article/197257/geografiya-schityi---eto-aldanskiy-schit-ukrainskiy-schit
  • http://www.x-mineral.ru/vse-o-poleznyx-iskopaemyx/452-zakonomernosti-v-razmeshchenii-poleznykh-iskopaemykh.html
  • http://helpiks.org/7-70164.html
  • http://studfiles.net/preview/2673853/page:10/
  • http://lomonosov-fund.ru/enc/ru/encyclopedia:0129274