Меню Рубрики

Коэффициент полезного действия мышц человека составляет

Сравнение увеличения затрат энергии с увеличением тяжести работы показывает, что величина затрачиваемой энергии за вычетом основного обмена всегда больше совершаемой человеком «полезной» механической работы. Причина такого несоответствия заключается прежде всего в том, что при превращении химической энергии питательных веществ в работу значительная часть энергии теряется в виде тепла, не переходя в механическую энергию. Некоторая часть энергии расходуется на поддержание статических напряжений, которые только частично учитываются при подсчете совершенной человеком механической работы. Каждое движение человека требует и статических и динамических напряжений, причем соотношение тех и других при различных работах различно. Так, поднятие груза с высоты 1 м на высоту 1,5 м при выпрямленном туловище требует меньшей затраты энергии, чем поднятие такого же груза с высоты 0,5 м на высоту 1 м при наклонном положении туловища, так как удержание последнего в наклонном состоянии требует более значительного статического напряжения мышц спины.

Определенная часть энергии, образовавшейся при химических реакциях, расходуется на преодоление сопротивлений движению со стороны растягиваемых во время движения мышц-антагонистов и эластичных тканей в суставах, на преодоление вязкого сопротивления деформации мышц и на преодоление инерции движущихся звеньев тела при изменениях направления движения. Отношение количества выполненной человеком механической работы, выраженное в калориях, к величине затрат энергии, также в калориях, называется энергетическим коэффициентом полезного действия.

Величина коэффициента полезного действия зависит от способа работы, ее темпа и состояния тренированности и утомления человека. Иногда величину коэффициента полезного действия используют для оценки качества рабочих приемов. Так, при изучении движений опиловки металла было установлено, что на каждый килограмм-сила-метр работы затрачивается 0,023 ккал, что соответствует коэффициенту полезного действия 1/[427 X 0,023] = 10,2
Этот сравнительно невысокий коэффициент полезного действия объясняется значительной статической работой при опиловке, требующей напряжения мышц туловища и ног для сохранения рабочей позы. При других видах работы коэффициент полезного действия может быть больше или меньше величины, найденной для опиловки металла. Ниже приведены величины коэффициента полезного действия для некоторых работ:
Подъем тяжестей. 8,4
Работа напильником. 10,2
Работа вертикальным рычагом (толкание) 14,0
Вращение рукоятки. 20,0
Езда на велосипеде . 30,0
Наибольшее значение, которого может достичь коэффициент полезного действия человеческого организма,— 30%. Эта величина достигается при выполнении хорошо освоенной, привычной работы с участием мускулатуры ног и туловища.

Величина коэффициента полезного действия работы в отдельных случаях позволяет установить более рациональные условия выполнения физической работы, в частности определить оптимальную скорость (темп), нагрузку, производительность работы. Большей частью величина энергетических трат на единицу продукции бывает наименьшей, а обратная ей величина коэффициента полезного действия — наибольшей при средних степенях скорости и нагрузки в середине периода работы, если она продолжается до утомления.

Изменение коэффициента полезного действия в отдельных случаях, в частности, когда сравниваются однородные работы, различающиеся лишь способом выполнения, может служить одним из критериев для оценки рациональности некоторых конкретных сторон труда. Однако этот критерий для работающего человека ни в какой мере не имеет того определяющего и универсального значения, которым он обладает в оценке работы машины. В то время как в паровой машине только внешняя механическая работа является основным полезным эффектом превращений энергии, а остальная извлеченная из топлива энергия справедливо считается бесполезно потерянной, для организма человека полезна и та часть потребляемой энергии, которая идет не на внешнюю механическую работу, а на повышение жизнедеятельности клеток во время работы и на восстановление временно уменьшающейся работоспособности.

Более точным и универсальным критерием физиологической оценки рациональности конкретных рабочих приемов и отдельных движений является длительность поддержания высокого уровня работоспособности, что проявляется в увеличении производительности труда и в таком приспособлении физиологических функций, которое ведет к дальнейшему развитию физических и духовных способностей человека.

источник

6.2.6. Энергетика мышцы. Системы восстановления атф, коэффициент полезного действия и тепловой выход мышцы

Источником энергии мышечного сокращения служит энергия гидролитического расщепления АТФ с помощью фермента миозин-АТФ-фазы до АДФ и неорганического фосфата (3 молекулы АТФ на 1 «гребок»). Расщепление 1 моля АТФ обеспечивает около 48 кДж. 50-60% этой энергии превращается в тепло и лишь 40-50% идет на работу мышц, причем лишь 20-30 % превращается в механическую энергию, остальное идет на работу ионных насосов и окислительного восстановления АТФ.

Восстановление АТФ осуществляется сразу же после ее расщепления до АДФ. Этот процесс осуществляется при участии 3 энергетических систем.

1) фосфогенная система, где используется энергия креатинфосфата (система АТФ-КрФ). Эта система обладает наибольшей скоростью действия, мощностью, но незначительной емкостью, поэтому используется в самом начале работы или при работе максимальной мощности (но не более 5 с). Это анаэробный процесс, т.е. он протекает без участия кислорода.

2) система окислительного фосфорилированияразворачивается по мере удлинения времени работы (через 2-3 мин). Если интенсивность работы мышц не максимальна, то их потребности в кислороде удовлетворяются полностью. Поэтому работа может выполняться на протяжении многих часов. Необходимая для ресинтеза АТФ энергия поступает в результате окисления жиров и углеводов, причем чем больше интенсивность, тем меньше вклад жиров. Это аэробный процесс.

3) гликолитическая система, где восстановление АТФ идет за счет энергии анаэробного расщепления углеводов (гликогена, глюкозы) до молочной кислоты. Во время этой реакции скорость образования АТФ в 2-3 раза выше, а механическая работа в 2-3 раза больше, чем при длительной аэробной работе. Однако, емкость гликолитической системы в тысячи раз меньше, чем окислительной (хотя в 2,5 раза больше фосфогенной. Поэтому такая система может обеспечивать работу на время от 20 с до 1-2 мин. и заканчивается она значительным накоплением молочной кислоты.

Необходимо заметить, что и хемомеханическая реакция в системе актомиозиновых мостиков, и все последующие процессы идут с потерей энергии в форме теплоты.Коэффициент полезного действия (КПД) мышцы как механи­ческой машины (здесь надо оговориться, что мышца не только механическая машина, но и основной обогреватель организма, поэтому ее тепловой выход не бесполезен) может быть вычислен по формуле:

где А – совершаемая работа, а Q- тепловой выход мышцы.

Тепловой выход мышцы (Q)сложен. Во-первых, существует выход теплоты при изометрическом напряжении мышцы, при задержке ее сокращения стопо­ром. Этот выход называюттеплотой активации. Если на фоне этого состояния мышца с грузом освобождается от стопора и, сокращаясь, поднимает груз, то она выделяет дополнительную теплоту —теплоту укорочения, пропорциональную механической работе(эффект Фенна). По-видимому, пере­мещение нитей с подключением в работу все новых (заряженных энергией) мостиков способствует высвобождению дополнительной энергии (и механиче­ской, и тепловой).

В условиях свободного подъема груза теплота активации (соответстствующая фазе напряжения сухожилия) и теплота укорочения сливаются, образуя так называемое начальное теплообразование. После сокращения (одиночного или краткого тетануса) в мышце возникаетзадержанное теплообразование, которое связано с процессами, обеспечивающими ресинтез АТФ, оно длится секунды и минуты. Если рассчитывать КПД мышцы по начальному теплообра­зованию, то он составит примерно 50-60% (для оптимальных условий стиму­ляции и нагрузки). Если же вести расчет КПД исходя из видов теплопродук­ции, связанных с данной механической работой, то КПД составит примерно 20-30% (КПД мышц млекопитающих падает при адаптации к холоду, что способствует усилению теплопродукции в организме).

источник

Работа мышцы, значение темпа движений и величины поднимаемого груза. Закон средних нагрузок. Коэффициент полезного действия мышц.

Механическая работа (А), совершаемая мышцей, измеряется произведением поднимаемого веса (Р) на расстояние (h): А = Р * h кгм. При регистрации работы изолированной мышцы лягушки видно, что чем больше величина груза, тем меньше высота, на которую его поднимает мышца. Различают 3 режима работы мышцы: изотонический, изометрический и ауксотонический.

Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напряжение в ней при этом не изменяется. Это происходит при раздражении изолированной мышцы лягушки, закрепленной одним концом на штативе. Так как при этих условиях Р = 0, то механическая работа мышцы также равна нулю (А = 0). В таком режиме работает в организме человека только одна мышца — мышца языка. (В современной литературе также встречается термин изотонический режим по отношению к такому сокращению мышцы с нагрузкой, при котором по мере изменения длины мышцы напряжение ее сохраняется неизменным, но в этом случае механическая работа мышцы не равна пулю, т. е. она совершает внешнюю работу).

Изометрический режим (режим постоянной длины мышцы) характеризуется напряжением мышцы в условиях, когда она закреплена с обоих концов или когда мышца не может поднять слишком большой груз. При этом h = 0 и, соответственно, механическая работа тоже равна нулю (А = 0). Этот режим наблюдается при сохранении заданной позы и при выполнении статической работы . В этом случае в мышечном волокне все равно происходят процессы возникновения и разрушения мостиков между актином и миозином, т. е. тратится энергия на эти процессы, но отсутствует механическая реакция перемещения нитей актина вдоль миозина. Физиологическая характеристика такой работы заключается в оценке величины нагрузки и длительности работы.

Ауксотонический режим (смешанный режим) характеризуется изменением длины и тонуса мышцы, при сокращении которой происходит перемещение груза. В этом случае совершается механическая работа мышцы (А= Р ? h). Такой режим проявляется при выполнении динамической работы мышц даже при отсутствии внешнего груза, так как мышцы преодолевают силу тяжести, действующую на тело человека. Различают 2 разновидности этого режима работы мышц: преодолевающий (концентрический) и уступающий (эксцентрический) режим.

Для измерения мышечной силы применяют динамометры: кистевой и становой. Максимальная сила кисти, кгс вычисляется как среднее арифметическое трех сжиманий динамометра с максимальной силой через одну минуту.Развивая напряжение и сокращаясь, мышца способна выполнять механическую работу. Наибольшую работу он выполняет при средних нагрузках и средних скоростях. Это явление получило название закона средних нагрузок.Средние нагрузки и средние скорости сокращения различны для разных мышц, что необходимо учитывать при разработке норм и организации труда.

Коэффициент полезного действия мышц

Во время работы в мышце в зависимости от интенсивности изменений обмена веществ возрастает образование тепла. Часть энергии, освобождающейся при химических процессах без превращения в тепло, непосредственно переходит в кинетическую энергию сокращения мышцы. Остальная большая часть энергии химических процессов превращается в тепловую, поэтому мышцы при сокращении выделяют тепло.

Коэффициентом полезного действия (КПД) называется отношение энергии, затраченной на работу мышц, ко всей энергии, произведенной в мышцах во время работы. КПД мышц человека колеблется в среднем от 15 до 25%, КПД мышц ног — от 20 до 35%, а рук — от 5 до 15%.

При тренировке он увеличивается у человека до 25-30% и даже до 35.

Дата добавления: 2014-12-22 ; просмотров: 1941 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Мышечные ткани. Строение и функции мышечного волокна. Преобразование энергии при мышечном сокращении. КПД мышечного сокращения

Мы́шечными тка́нями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма и состоят из мышечных волокон.

Мышечное волокно представляет собой вытянутую клетку. В состав волокна входят его оболочка — сарколемма, жидкое содержимое — саркоплазма, ядро, митохондрии, рибосомы, сократительные элементы — миофибриллы, а также содержащий ионы Са 2+ , — саркоплазматический ретикулум. Поверхностная мембрана клетки через равные промежутки образует поперечные трубочки, по которым внутрь клетки проникает потенциал действия при ее возбуждении.

Функциональной единицей мышечного волокна является миофибрилла. Повторяющаяся структура в составе миофибриллы называется саркомером. Миофибриллы содержат 2 вида сократительных белков: тонкие нити актина и вдвое более толстые нити миозина. Сокращение мышечного волокна происходит благодаря скольжению миозиновых филаментов по актиновым. При этом перекрывание филаментов увеличивается и саркомер укорачивается.

Главная функция мышечного волокна— обеспечение мышечного сокращения.

Преобразование энергии при мышечном сокращении. Для сокращения мышцы используется энергия,освобождающаяся при гидролизе АТФ актомиозином,причем процесс гидролиза тесно сопряжен с сократительным процессом. По количеству выделяемого мышцей тепла можно оценить эффективность преобразования энергии при сокращении.. При укорочении мышцы скорость гидролиза повышается в соответствии с ростом производимой работы. освобождаемой при гидролизе энергии достаточно для обеспечения только совершаемой работы, но не полной энергопродукции мышцы.

Коэффициент полезного действия (кпд) мышечной работы (r) представляет собой отношение величины внешней механической работы (W) к общему количеству выделенной в виде тепла (Е) энергии:

Наиболее высокое значение кпд изолированной мышцы наблюдается при внешней нагрузке, составляющей около 50% от максимальной величины внешней нагрузки. Производительность работы (R) у человека определяют по величине потребления кислорода в период работы и восстановления по формуле:

где 0,49 — коэффициент пропорциональности между объемом потребленного кислорода и выполненной механической работой, т. е. при 100% эффективности для выполнения работы, равной 1 кгсм (9,81 Дж), необходимо 0,49 мл кислорода.

Двигательное действие / КПД

Ходьба/23-33%; Бег со средней скоростью/22-30%; Езда на велосипеде/22-28%; Гребля/15-30%;

Толкание ядра/27%; Метание/24%; Поднятие штанги/8-14%; Плавание/ 3%.

4. Изотонический режим работы мышц. Статическая работа мышц.

Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напряжение в ней при этом не изменяется. Так как при этих условиях величина нагрузки Р = 0, то механическая работа мышцы также равна нулю (А = 0). В таком режиме работает в организме человека только одна мышца — мышца языка.

Статическая работа не предполагает сильного напряжения, однако в некоторых случаях статическая работа мышц может быть очень напряженной, например при удержании штанги, при некоторых упражнениях на кольцах или параллельных брусьях. Такая работа требует одновременного сокращения всех или почти всех волокон мышц и может продолжаться лишь очень короткое время. При динамической работе поочередно сокращаются различные группы мышц, причем некоторые мышцы работают то динамически, производя движение в суставе, то статически, обеспечивая на некоторое время неподвижность костей того же сустава. Степень напряжения мышц может быть различной.

Статическая работа утомляет скелетную мускулатуру больше, чем динамическая.

5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.

К системе кровообращения относятся сердце и сосуды — кровеносные и лимфатические.. Сердце млекопитающих четырехкамерное. Кровь движется по двум кругам кровообращения.

функции всех элементов сердечно-сосудистой системы: 1) трофическая – снабжение тканей питательными веществами; 2) дыхательную – снабжение тканей кислородом; 3) экскреторную – удаление продуктов обмена из тканей; 4)регуляторную – перенос гормонов, выработка биологически активных веществ, регуляция кровоснабжения, участие в воспалительных реакциях.

При движении крови по сосудам различают линейную и объемную скорость кровотока.

Линейная скорость кровотокаопределяется суммарным сечением сосудистой системы. Она максимальна в аорте — до 50 см/сек и минимальна в капиллярах — около нуля. В венозном отделе сосудистой системы линейная скорость вновь возрастает. Линейная скорость в полых венах в два раза меньше, чем в аорте и равна примерно 25 см/мин.

Объемная скорость кровотока — это количество крови, протекающее через общее сечение сосудистой системы в единицу времени. Она одинакова во всех отделах сосудистой системы крови.

Время полного кругооборота крови — это то время, за которое кровь проходит через большой и малый круги кровообращения. При 70-80 сокращениях сердца в минуту полный кругооборот крови происходит приблизительно за 20-23 сек.

Движение крови в организме: аорта – 500-600 мм/c, артерии – 150-200 мм/c, артериолы – 5 мм/c, капилляры – 0,5 мм/c, средние вены – 60-140 мм/c, полые вены — 200 мм/c. Гипертония – повышенное АД. Гипотония – пониженное АД.

Систолический объем крови. Объем крови, нагнетаемый каждым желудочком в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца, обозначают как систолический, или ударный, объем крови.

Работа, совершаемая сердцем, затрачивается на преодоление сопротивления и сообщение крови кинетической энергии.

Рассчитаем работу, совершаемую при однократном сокращении левого желудочка.

Vу – ударный объем крови в виде цилиндра. Можно считать, что сердце поставляет этот объем по аорте сечением S на расстояние I при среднем давлении р. Совершаемая при этом работа равна:

На сообщение кинетической энергии этому объему крови затрачена работа:

где р – плотность крови;υ – скорость крови в аорте. Таким образом, работа левого желудочка сердца при сокращении равна:

Эта формула справедлива как для покоя, так и для активного состояния организма, но эти состояния отличаются разной скоростью кровотока.

6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.

Уравнение Пуазёйля— закон, определяющий расход жидкости при установившемся течении вязкой несжимаемой жидкости в тонкой цилиндрической трубе круглого сечения.

Согласно закону, секундный объёмный расход жидкости пропорционален перепаду давления на единицу длины трубки (градиенту давления в трубе) и четвёртой степени радиуса (диаметра) трубы:

Где Q — объемный секундный расход жидкости; R — радиус трубопровода; p1-p2— перепад давлений на трубке; n—коэффициент трения; L— длина трубки.

Закон Пуазёйля работает только при ламинарном течении и при условии, что длина трубки превышает так называемую длину начального участка, необходимую для развития ламинарного течения в трубке.

Гидравлическое сопротивление прямо пропорционально длине сосуда и вязкости крови и обратно пропорционально радиусу сосуда в 4-й степени, то есть больше всего зависит от просвета сосуда , а также от состояния стенок сосудов и от их эластичности.

Так как наибольшим сопротивлением обладают артериолы , общее периферическое сопротивление сосудов(ОПСС) зависит главным образом от их тонуса. Различают центральные механизмы регуляции тонуса артериол (нервные и гормональные влияния)и местные (миогенная , метаболическая и эндотелиальная регуляция).

На артериолы оказывают постоянный тонический сосудосуживающий эффект симпатические нервы . Основные гормоны, в норме участвующие в регуляции тонуса артериол, — это адреналин и норадреналин .

Миогенная регуляция сводится к сокращению или расслаблению гладких мышц сосудов в ответ на изменения трансмурального давления; при этом напряжение в их стенке остается постоянным. Тем самым обеспечивается ауторегуляция местного кровотока — постоянство кровотока при меняющемся перфузионном давлении.

Метаболическая регуляция обеспечивает расширение сосудов при повышении основного обмена (за счет выброса аденозина и простагландинов) и гипоксии (также за счет выделения простагландинов).

Дата добавления: 2014-11-20 ; Просмотров: 1200 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Сегодня в интернете можно встретить множество самых различных определений феномену жизни без еды, это и праноедение – питание пранической энергией, и солнцеедение – питание солнечным светом, и бретарианство – питание воздухом и пространственной энергией.

Но, несмотря на заявления представителей этих типов питания, о том, что они живут, питаясь нематериальной пищей, многие из них, регулярно пьют воду, чай и другие напитки, а иногда даже съедают немного шоколада, сыра и прочего, объясняя это желанием удовлетворить свои вкусовые ощущения. В общем, жизнью без еды это называть, конечно же, нельзя. Точнее назвать то можно, но по факту, это будет всё же некоторый образ питания, хотя и с экстремально низким уровнем потребления калорий с пищей.

Результатом такого низкокалорийного питания являются кардинальные изменения в метаболизме и физиологии человека, которые, по сути, являются антистрессорными адаптивными реакциями, выработанными у него в процессе исторического развития. Итогом этих изменений будет приобретение организмом ряда полезных, с точки зрения эволюции, навыков и способностей, необходимых ему для выживания в окружающей среде, в том числе и в экстремальных условиях.

Перечислим наиболее важные из этих положительных приобретений:

* Малая зависимость от пищевых ресурсов
* Исключительная способность легко переносить голод и жажду
* Уменьшение потребности во сне
* Улучшение состояния здоровья
* Замедление процессов старения организма
* Повышение психологической устойчивости к стрессам
* Расширение интеллектуальных возможностей

Но наиболее значимой особенностью Бигу является то, что человек живя в таком режиме питания, потребляет с пищей намного меньше энергии, чем её требуется для его выживания по представлениям современной медицины и диетологии. Ведь согласно экспериментальным данным, даже когда человек находится в состоянии полного покоя и не выполняет никаких энергозатратных действий, то расход его энергии составляет примерно 1700 ккал в сутки. Как же тогда возможно существование человека в состоянии Бигу, когда он ведёт физически активный образ жизни, не теряет вес, нормально себя чувствует и на протяжении длительного времени потребляет с пищей энергии намного меньше, чем это количество?
Существует множество попыток дать ответ на этот вопрос с точки зрения эзотерики, философии и теософии, нам же объяснить природу этого явления поможет наука. А так как согласно современным представлениям науки, все процессы превращения энергии в живых организмах происходят в соответствии с некоторыми термодинамическими принципами, которые универсальны для живой и неживой природы. То нам, для того чтобы обосновать возможность жизни человека в состоянии Бигу, в первую очередь, необходимо ознакомится с важнейшими из них.

Читайте также:  Полезные дополнения для браузера яндекс

Первый закон термодинамики является законом сохранения энергии. В простой формулировке он звучит так: – энергия в изолированной системе не может возникнуть из ниоткуда, и не может исчезнуть в никуда, она может лишь трансформироваться из одного вида в другой, при этом общее её количество будет оставаться величиной постоянной. Было доказано экспериментально, что этот закон применим к процессам, которые происходят в любых биологических системах.

Этот закон гласит, что любые процессы в биологических системах, обязательно сопровождаются рассеянием некоторой части энергии в теплоту. Все формы энергии — механическая, химическая, электрическая и прочие, могут быть превращены в теплоту без остатка. Однако сама теплота не может полностью превращаться в другие формы энергии, поскольку тепловое движение молекул является хаотическим процессом, и часть энергии всегда будет уходить на столкновение этих молекул между собой.

Эти два фундаментальных научных закона «запрещают» возможность создания вечного двигателя, а также обрекают на провал любые другие попытки получения работы без затраты энергии. И именно с позиции этих незыблемых принципов Мироздания мы и будем рассматривать питание физического тела человека, как непрерывный процесс потребления энергии и трансформации её из одних форм в другие.

Важнейшим свойством живых организмов, является их способность превращать и хранить энергию в виде специальных веществ — аккумуляторов энергии. Так в процессе фотосинтеза растения могут накапливать получаемую извне энергию солнца в виде наиболее универсального аккумулятора энергии — молекулы аденозинтрифосфорной кислоты. Связи между атомами в этой молекуле при необходимости легко разрываются с выделением большого количества энергии, которая, в свою очередь, может использоваться как источник энергии для всех процессов в любой живой клетке. С помощью АТФ растения осуществляют синтез разнообразных органических веществ – белков, жиров и углеводов.
Животные, в свою очередь, приспособились использовать эти накопленные растениями питательные вещества для поддержания своих жизненных функций и синтеза всё тех же молекул АТФ. При умеренных физических нагрузках в организме взрослого человека ежедневно синтезируется около 75 кг АТФ. Но реально в теле человека его содержится всего около 50 гр. С чем связан этот парадокс?
А с тем, что в организме человека АТФ является одним из самых часто обновляемых веществ, потому как непрерывно используется клетками в самых разнообразных процессах жизнедеятельности. Мудрая природа сделала так, что живые организмы, вместо того чтобы накапливать АТФ в больших количествах в тканях, постоянно ресинтезируют его в своих клетках. Из этого следует, что нашему организму не требуется постоянный приток АТФ с пищей, ему необходимы лишь энергия и определённые условия для восстановления уже имеющихся в его запасе ресурсов этого вещества.

Итак, значит прежде всего организму нужна энергия. Но для того чтобы понять, насколько эффективно человек может использовать и сохранять энергию в своём теле, мы с вами должны выяснить из чего складывается её баланс в живом организме. Для этого перечислим основные пути поступления и отдачи энергии.

Факторами повышающим расход энергии являются:

1. Прием и переваривание пищи
2. Физическая активность
3. Терморегуляция организма

К источникам, обеспечивающим приток энергии можно отнести:

1. Энергию пищи
2. Источники теплового излучения
3. Акустические и световые волны

Главным условием гарантированного выживания человека будет компенсация всех энергозатрат его организма с помощью перечисленных выше источников энергии. Далее в статье будет дано объяснение, почему именно пища является неотъемлемым условием активной физической деятельности человека. Также в ней, будет раскрыто, как за счёт внешних второстепенных источников энергии человеческий организм может настолько снижать свои энергозатраты, что для обеспечения нормального выживания его потребность в пище сводится к минимуму.

Как известно энергия высвобождается из пищевых продуктов в процессе их биологического окисления, при этом основными отличиями этого процесса от обычного горения, являются: его большая протяжённость во времени и многоступенчатость биохимических реакций.
Питательные вещества окисляются вплоть до конечных продуктов, которые выделяются из организма. Например, углеводы окисляются в организме до углекислого газа и воды. Такие же конечные продукты образуются при сжигании углеводов в особой печи – калориметре. При этом величина энергии, высвобождаемой из каждого грамма глюкозы в этой реакции, составляет чуть более четырёх килокалорий. Но несмотря на то, что процесс окисления глюкозы в живых клетках, является многоступенчатым процессом, его суммарный выход энергии будет точно такой же. И как было сказано ранее, именно эта энергия используется организмом для синтеза АТФ. Аналогичным образом, с помощью калориметра, получили среднюю величину физиологически доступной энергии и для других веществ пищи. Например, в белках и углеводах содержится около — 4 ккал; жире — 9 ккал. Но у пищи , кроме сухих цифр о её химическом составе и энергетическом потенциале , есть ещё целый ряд интересных свойств.
Например, то, что еда помимо поставки энергии организму, является фактором, усиливающим его энергопотребление. С помощью специального измерительного оборудования были получены данные, что после приема пищи интенсивность метаболизма у человека увеличивается на 10-20% по сравнению с его уровнем в состоянии покоя. И сохраняется это повышение обмена веществ в организме до десяти часов. Эти энергетические затраты связаны с приемом, перевариванием и усвоением пищи, так как все эти процессы, начиная с пережевывания еды, и заканчивая, её эвакуацией из организма требуют энергию.
Количество энергии расходуемой на пищеварение зависит, прежде всего, от химического состава потребляемой пищи. Максимум энергозатрат на переваривание наблюдается у белка, особенно животного происхождения, на его усвоение может расходоваться по разным источникам от 30% до 40% общей калорийности принятой белковой пищи. Для углеводов этот показатель находится в пределах 5%, а у жиров 3%. Удивительно, не правда ли? Ведь получается, что привычная для нас пища, совсем не безвозмездно отдаёт нам свою энергию.
Более того, пища не просто пассивный энергетический ресурс, она является ещё и морфообразующими фактором, то есть влияет на особенности строения живых организмов как в индивидуальном, так и в их историческом развитии. Четырёх-камерный желудок у жвачных, строение ротового аппарата муравьеда, различные пропорции желудочно-кишечного тракта у хищников и травоядных, а также множество других адаптационных приспособлений у разных видов животных, всё это, есть нечто иное, как результаты воздействия определённых пищевых предпочтений на эволюцию живых организмов. Пока пища поступает в организм, пищеварительная система востребована, но стоит убрать этот беспрерывный поток, и в теле человека незамедлительно начнут происходить различные перестройки внутренних органов направленные на уменьшение их энергопотребления.

Помимо всего прочего, употребление пищи предопределяет интенсивную циркуляцию веществ в организме. Распадаются и вновь синтезируются различные ферменты и гормоны, в пищеварительном тракте активизируются иммунные клетки, в печени нейтрализуются десятки токсичных соединений, повышается нагрузка на выделительную систему. Всё это обуславливает специфическое распределение энергопотребления в организме человека, и лидирующее место в нём принадлежит именно пищеварительной системе. Даже при отсутствии активных процессов переваривания пищи, у находящегося в состоянии покоя человека около 50% всех энергозатрат приходится на органы, так или иначе связанные с пищеварением, по 20% на скелетные мышцы и центральную нервную систему и около 10% на работу органов дыхания и кровообращения.
Отдельно стоит упомянуть о том, что в организме человека с обычной схемой питания молекулы белков функционируют от нескольких часов до нескольких дней. Так как при интенсивном обмене веществ за этот короткий период в них накапливаются нарушения, и белки становятся непригодными для выполнения своих функций. Они расщепляются и заменяются на вновь синтезируемые.
Совсем другая картина наблюдается при низкокалорийном питании и голодании. В клетках тканей человека в состоянии Бигу начинают вырабатываться особые вещества, так называемые белки теплового шока. Функция этих соединений состоит в защите от разрушения уже существующих клеточных белков, также они помогают создавать в клетках правильные структуры новых белков, исключая тем самым потери энергии и материальных ресурсов. Помимо этого белки теплового шока отключают естественный механизм самоубийства старых клеток, что позволяет организму существенно сократить необходимость в обновлении тканей.

Из всего этого следует несколько выводов:

1. При переходе на питание жидкой, преимущественно углеводистой пищей, потери энергии на переваривание и выделение продуктов её распада из организма уменьшается.
2. Вследствие, сокращения поступления в организм пластических веществ и уменьшением функции выделения, в теле человека начинает более эффективней использоваться механизм рециркуляции уже отработанных и повреждённых структурных молекул.
3. Благодаря действию белков теплового шока в организме снижается потребность в дополнительных энергозатратах, материальных ресурсах и обновлении тканей.
4. При длительном отсутствии в рационе Бигу твёрдой пищи, происходит постепенная атрофия органов пищеварения и мышечного аппарата желудочно-кишечного тракта, что позволяет человеку дополнительно снизить связанные с ними расходы энергии.

Но, к сожалению, какими бы воодушевляющими небыли эти выводы, полностью отказаться от пищи на длительное время физически активному человеку невозможно! Почему так бескомпромиссно это утверждение, мы с вами узнаем поняв некоторые особенности физиологии тела человека.

При использовании ATФ функциональными системами организма, практически вся её энергия переходит в тепло. Исключение составляют случаи: когда мышцы выполняют работу над внешними телами, то есть придают этим телам кинетическую энергию движения; а также излучение электромагнитных волн, порождаемое нервной системой. Но даже при осуществлении механической работы около 80% энергии, используемой при мышечном сокращении, выделяется в виде тепла и только 20% превращается в саму работу(. )
Потери же в виде электромагнитного излучения от центральной нервной системы по сравнению кинетическими формами энергии просто ничтожны, то есть практически вся энергия в нейронах, тоже трансформируется в тепло. Мало того, доказано, что вообще интенсивная интеллектуальная деятельность не сопровождается большой затратой энергии. Трудные математические вычисления, чтение книг и другие формы умственного труда, если они не сопровождаются движением, вызывают едва заметное повышение затраты энергии, всего на несколько процентов от энергопотребления организма в состоянии покоя.

Если подвести итог, то можно сказать следующее: Организм не может использовать полностью всю энергию, содержащуюся в питательных веществах. Потому как всякий процесс превращения энергии из одного вида в другой, в том числе и получение энергии из пищи, происходит с обязательным образованием тепла, которое затем рассеивается в окружающем пространстве.
Также и в мышцах, только малая часть вырабатываемой в них энергии используется в самом мышечном сокращении, а львиная доля энергии опять-таки переходит в теплоту. Если представить это в цифрах, то получится, что коэффициент полезного действия физического тела человека колеблется в весьма узком интервале значений 20-25%, а остальные 75-80% рассеиваются в виде тепла. Поэтому каким бы ни было совершенным тело человека, оно всегда будет терять энергию на теплообразование, в особенности, когда речь идёт о физической активности.

бег средней интенсивности

750 ккал/час

450 ккал /час

тренировка с подъемом тяжестей

450 ккал /час

300 ккал /час

Любой человек ведущий активный образ жизни, вынужден как-то восполнять энергетические затраты на ресинтез АТФ в мышцах. Но есть лишь две возможности обеспечить необходимые условия для протекания этого процесса: одна из них, это использование организмом ограниченного запаса питательных веществ из собственных тканей, другая, это употребление пищи. Почему так? Ответ на этот вопрос кроется в особенностях жизнедеятельности клеток животных и человека, у которых существует всего два способа восстановления использованных молекул АТФ. Оба из которых требуют присутствия в качестве необходимых компонентов реакций — питательных веществ пищи.

  • Первый из них, это гликолиз — вспомогательный тип энергообеспечения, включающийся в условиях нехватки кислорода. В этом процессе молекула глюкозы расщепляется пополам, с образованием всего двух молекул АТФ.
  • Второй, это окислительное фосфорилирование происходящее с участием кислорода в специальных клеточных органеллах – митохондриях, где в сложной цепи химических реакций из одной молекулы глюкозы синтезируется 38 молекул АТФ.

К величайшему сожалению, других способов синтеза АТФ у животных не существует. Поэтому как бы не была привлекательна идея — жизни без еды, если вы собираетесь вести активный образ жизни, то вам в обязательном порядке придётся восполнять энергетические затраты на ресинтез АТФ посредством пищи.
Остаётся открытым лишь вопрос о том, сколько вообще нужно человеку энергии из пищи? А получить ответ на него нам поможет очень простая формула.

В этой формуле нам практически неподвластно изменить значение энергетических затрат на физические нагрузки, так как существует конечный предел эффективности мышечной работы (КПД мышечных сокращений равен всего 20-25%). Однако со второй составляющей этого уравнения всё намного интересней.

Основной обмен – это то количество энергии, которое затрачивается организмом человека при комнатной температуре в состоянии полного мышечного покоя, при условии отсутствия каких либо процессов пищеварения. Проще говоря, это то количество энергии, которое тело затратит, если человек будет целый день спать. В таких условиях энергия затрачивается только на поддержание жизнедеятельности организма, то есть она используется для мышечной работы сердца и лёгких, сохранение постоянной температуры тела, проведение нервных импульсов, синтез ферментов, гормонов и прочих необходимых организму веществ.

В среднем для взрослого человека величина основного обмена составляет примерно 1700 ккал в сутки. При этом организм может сжигать до 70% от суточной потребности в калориях. Однако эта цифра может уменьшаться в зависимости от различных факторов:

Возраст — с годами основной обмен веществ замедляется. На каждые десять лет этот показатель снижается в среднем на 2%.
Диета — голодание или резкое сокращение количества потребляемых калорий может снизить величину основного обмена на 30%.
Температура тела — при уменьшении температуры тела на каждый градус, интенсивность основного обмена падает примерно на 7%.
Температура окружающей среды — оказывает наибольшее влияние на основной обмен и поэтому на этом факторе стоит остановиться подробней.

Как мы уже знаем, в живом организме благодаря энергии пищи постоянно образуется тепло, а с поверхности его тела происходит постоянная отдача тепла в окружающую среду. Следовательно, температура тела зависит от соотношения двух процессов — теплообразования и теплоотдачи. Все животные в зависимости от способности регулировать течение этих двух процессов делятся на теплокровных и холоднокровных. У теплокровных температура тела сохраняется постоянной и не зависит от температуры внешней среды. Это свойство, особенно при понижении температуры окружающей среды, требует от них соответствующего усиления процессов метаболизма, в основном за счёт интенсивного потребления энергии из пищи и жировых запасов.
Принципиальное отличие теплообмена холоднокровных заключается в том, что благодаря относительно низкому уровню их собственного метаболизма, главным источником энергии у них является внешнее тепло. Поэтому температура их тела выше температуры окружающей среды максимум на несколько градусов. Такое подчинение температуре среды имеет целый ряд преимуществ.
Например, в условиях сухого жаркого климата холоднокровность позволяет избегать излишних потерь воды, потому что маленькая разница между температурами тела и среды не вызывает дополнительного испарения. Поэтому высокие температуры холоднокровные животные переносят легче и с меньшими энергетическими потерями, чем теплокровные, которые тратят много энергии на удаление избытка тепла из тела.
Также известно, что у холоднокровных под действием низких температур сильно замедляется метаболизм и резко уменьшается потребность в пище. У них приостанавливается интенсивность всех физиологических процессов: сердечные сокращения и дыхание становятся редкими, мышцы сокращаются медленнее, снижается интенсивность пищеварения. В такие моменты у этих животных процесс обмена веществ может протекать в 20-30 раз медленнее, чем у теплокровных (. )

Невольно напрашивается вопрос, как же способности холоднокровных организмов могут быть использованы человеком, ведь он по своему метаболизму относится к теплокровным животным? Оказывается, что могут! Потому что заботливая природа оставила нам возможность осуществления терморегуляции, с помощью элементов обеих стратегий теплообмена.
Обнаружено, что у человека, в условиях высокой температуры окружающей среды, обмен веществ в печени и других органах и тканях снижается, то есть нужная температура тела обеспечивается исключительно за счет поступления тепла извне, практически безо всяких энергозатрат со стороны организма.
Более сложная задача, это понижение температуры тела теплокровными животными в условиях холода. Но и тут человек показывает свои удивительные возможности адаптации и выживания. Когда температура тела человека падает ниже, чем это требуется для поддержания нормального обмена веществ, то такое состояние называется – гипотермия. В этих условиях жизнедеятельность организма снижается, что приводит к уменьшению потребности в кислороде и позволяет ему более экономно расходовать внутренние энергетические ресурсы. Установлено, что при падении температуры тела, на каждый градус Цельсия клеточный обмен замедляется на 5-7% (. ) Причём человек способен выдерживать существенное снижение температуры тела, прежде чем это вызовет непоправимые нарушения его жизнедеятельности.

Из всего вышесказанного становится ясно, что величина основного обмена у человека может существенным образом изменяться. Нераскрытым остался лишь механизм компенсационного воздействия внешних источников энергии, в том числе и температуры, на метаболизм человека. Для того чтобы исправить это положение и выяснить, каким образом нематериальные источники энергии могут уменьшить потребность организма человека в пище, мы с вами познакомимся с одним жизненно важным процессом происходящим во всех живых клетках.

Циклоз — движение внутренней среды в клетках растений и животных, которое обеспечивает равномерное распределение вещества внутри клетки: получение питательных веществ, ферментов и генетической информации всеми органеллами и частями клетки.(1)

Поддержание нормальной скорости циклоза осуществляется за счёт энергии АТФ и имеет жизненоважное значение для клетки, а следовательно, и для всего организма в целом.
Для нас же этот процесс представляет интерес, потому что он может быть активизирован под действием внешних факторов: температуры, механических воздействий и т.д. Исследования влияния этих факторов на внутриклеточные движения показали, что внешнее тепловое излучение вызывает разжижение цитоплазмы клеток, и следовательно вызывает ускорение в них циклоза. Также было выявлено, что полная тишина и чрезмерный шум замедляют циклоз, а гармоничные звуки, в том числе и музыка, усиливают движение цитоплазмы. Получается, что под действием внешних источников энергии в клетках уменьшается расход АТФ, а следовательно, снижается и потребность организма в пище. В общем, диапазон возможностей для адаптивных реакций человека по замедлению метаболизма и компенсации его энергозатрат в состоянии Бигу существует. Однако любой человек в состоянии Бигу для восстановления энергетических запасов организма рано или поздно обязательно должен возвращаться к пище.

В таком образе жизни есть свои минусы и плюсы. Чего только стоит сокращение часов сна и отсутствие мыслей о еде. Только представьте себе сколько времени и сил, благодаря этому, освобождается для творчества, внутреннего преображения и интеллектуальной деятельности.
Однако тут же следует заметить, что подходит такой образ питания исключительно для людей с лишним весом. Регулярные голодания для полного человека, это прекрасное средство по поддержанию тела в форме и нормализации массы тела. Тем же, кто обладает нормальным или низким индексом массы тела Бигу не рекомендуется. Для этой группы лиц адекватное и здоровое питание намного предпочтительней, чем любые формы голодания(. )

источник

Сравнение увеличения затрат энергии с увеличением тяжести работы показывает, что величина затрачиваемой энергии за вычетом основного обмена всегда больше совершаемой человеком «полезной» механической работы. Причина такого несоответствия заключается прежде всего в том, что при превращении химической энергии питательных веществ в работу значительная часть энергии теряется в виде тепла, не переходя в механическую энергию. Некоторая часть энергии расходуется на поддержание статических напряжений, которые только частично учитываются при подсчете совершенной человеком механической работы. Каждое движение человека требует и статических и динамических напряжений, причем соотношение тех и других при различных работах различно. Так, поднятие груза с высоты 1 м на высоту 1,5 м при выпрямленном туловище требует меньшей затраты энергии, чем поднятие такого же груза с высоты 0,5 м на высоту 1 м при наклонном положении туловища, так как удержание последнего в наклонном состоянии требует более значительного статического напряжения мышц спины.

Читайте также:  Чем полезна шкурка баклажан

Определенная часть энергии, образовавшейся при химических реакциях, расходуется на преодоление сопротивлений движению со стороны растягиваемых во время движения мышц-антагонистов и эластичных тканей в суставах, на преодоление вязкого сопротивления деформации мышц и на преодоление инерции движущихся звеньев тела при изменениях направления движения. Отношение количества выполненной человеком механической работы, выраженное в калориях, к величине затрат энергии, также в калориях, называется энергетическим коэффициентом полезного действия.

Величина коэффициента полезного действия зависит от способа работы, ее темпа и состояния тренированности и утомления человека. Иногда величину коэффициента полезного действия используют для оценки качества рабочих приемов. Так, при изучении движений опиловки металла было установлено, что на каждый килограмм-сила-метр работы затрачивается 0,023 ккал, что соответствует коэффициенту полезного действия 1/[427 X 0,023] = 10,2
Этот сравнительно невысокий коэффициент полезного действия объясняется значительной статической работой при опиловке, требующей напряжения мышц туловища и ног для сохранения рабочей позы. При других видах работы коэффициент полезного действия может быть больше или меньше величины, найденной для опиловки металла. Ниже приведены величины коэффициента полезного действия для некоторых работ:
Подъем тяжестей. 8,4
Работа напильником. 10,2
Работа вертикальным рычагом (толкание) 14,0
Вращение рукоятки. 20,0
Езда на велосипеде . 30,0
Наибольшее значение, которого может достичь коэффициент полезного действия человеческого организма,— 30%. Эта величина достигается при выполнении хорошо освоенной, привычной работы с участием мускулатуры ног и туловища.

Величина коэффициента полезного действия работы в отдельных случаях позволяет установить более рациональные условия выполнения физической работы, в частности определить оптимальную скорость (темп), нагрузку, производительность работы. Большей частью величина энергетических трат на единицу продукции бывает наименьшей, а обратная ей величина коэффициента полезного действия — наибольшей при средних степенях скорости и нагрузки в середине периода работы, если она продолжается до утомления.

Изменение коэффициента полезного действия в отдельных случаях, в частности, когда сравниваются однородные работы, различающиеся лишь способом выполнения, может служить одним из критериев для оценки рациональности некоторых конкретных сторон труда. Однако этот критерий для работающего человека ни в какой мере не имеет того определяющего и универсального значения, которым он обладает в оценке работы машины. В то время как в паровой машине только внешняя механическая работа является основным полезным эффектом превращений энергии, а остальная извлеченная из топлива энергия справедливо считается бесполезно потерянной, для организма человека полезна и та часть потребляемой энергии, которая идет не на внешнюю механическую работу, а на повышение жизнедеятельности клеток во время работы и на восстановление временно уменьшающейся работоспособности.

Более точным и универсальным критерием физиологической оценки рациональности конкретных рабочих приемов и отдельных движений является длительность поддержания высокого уровня работоспособности, что проявляется в увеличении производительности труда и в таком приспособлении физиологических функций, которое ведет к дальнейшему развитию физических и духовных способностей человека.

источник

Идея визуализировать энергетический эквивалент работы человеческого мозга сегодня используется даже в рекламных объявлениях.
Источник: фрагмент рекламного объявления из журнала Nature

Они как будто сговорились! У Есенина: «Коль гореть, так уж гореть, сгорая». А вот у Маяковского: «Светить всегда, светить везде». И, как итог, фактически парафраз этих строк из репертуара Пугачевой: «Жить, гореть и не угасать!» Но самое интересное начинается, если все эти строчки начать расшифровывать буквально.

Поразительно, но процесс дыхания аналогичен процессу горения, только это – «холодное» горение топлива (водород), взаимодействующего с окислителем (кислород воздуха). И в этом смысле аналог дыханию – это процессы медленного окисления: образование ржавчины, гниение, брожение.

А источником водорода как раз и служит пища: в желудке, кишечнике пища разлагается под действием ферментов до жирных кислот, которые, в свою очередь, распадаются в клетке до воды, углекислого газа и атомарного водорода. Образующийся в этой реакции электрон и запускает все идущие в живом организме процессы. В итоге, по существующим оценкам, мускульная энергия, развиваемая человеком, эквивалентна электрической лампочке мощностью в 150 Вт.

«. при работе мускула происходит почти такое же сгорание его тканей (то есть соединение этих тканей с кислородом), какое происходит с топливом в котельной топке паровой машины или в цилиндрах двигателей внутреннего сгорания, – растолковывает профессор Б.Вейнберг в заметке «КПД человека». – Таким образом, для работы мускула ему необходимо доставлять и материал для восстановления его тканей, и кислород для сжигания их. И то и другое доставляется посредством крови» («Техника – молодежи», № 2, 1935).

Все это дает основание физиологам теплопродукцию живых систем приравнять, с некоторым приближением, интенсивности потребления кислорода. Зафиксированные здесь рекорды, в энергетическом эквиваленте, таковы: максимальный обмен – у альпинистов и горцев: 250–280 МВт/г; жители равнин отстают почти на «корпус» – 160–200 МВт/г. То есть при адаптации человека к различным географическим условиям происходит увеличение мощности дыхательной системы на клеточном уровне. Ничего удивительного в этом нет, если учесть, что подъем в горах на 305 м приблизительно равен прохождению 480 км на север или на юг от экватора.

Любопытно, что согласно наставлениям каждый военнослужащий армии США должен получать 4,5 тыс. калорий в день, тогда как финские военные рекомендуют 6 тыс. калорий в день.

Но вообще-то нормальному взрослому человеку в день нужно с пищей потреблять 2500–3000 ккал. (За год же человек потребляет количество энергии, эквивалентное сжиганию 100 кг угля – sic!) Если этот энергетический прожиточный минимум обеспечен, человек способен с помощью своих мускулов совершить механическую работу, эквивалентную 500–600 ккал. Коэффициент полезного действия (КПД) человека, как нетрудно убедиться, 20%. Между прочим, это больше, чем у лошади (ее КПД около 10%), и значительно больше, чем у быка. (Может быть, интересно: одна лошадиная сила – подъем на 1 м 75 кг за 1 с.)

В то же время человек со своими мышцами далеко не лучший двигатель: его мощность, измеренная в лошадиных силах, составляет всего 0,03–0,04. Очень редко «мощность» взрослого мужчины доходит до 0,2–0,25 л.с.

Однако достоинством человека как энергетической установки является его большая выносливость. Так, например, по подсчетам академика Леонида Милова, через каждые четыре дня работы на пахоте лошади был необходим день выгула. В отличие от лошади русский крестьянин в XVIII веке с 22 апреля по 6 июня работал на поле без единого выходного, практически без отдыха и почти без сна.

Или вот еще пример ветхозаветной «безотходной» технологии. Пирамиду Хеопса строили 100 тыс. человек, заменявшиеся новыми каждые три месяца на протяжении 30 лет. Поднимались громадные тяжести: гранитные балки перекрытия склепа пирамиды Хеопса весят 500 тонн каждая, а в пирамиде Хефрена есть монолиты весом до 423 тонн. И все это ворочали вручную!

Когда находишься рядом с этими рукотворными исполинскими мегалитами, первое, что приходит на ум, – какая же чертова уйма обезличенного человеческого труда овеществлена в этих склепах! Тем более это тяжело представить себе, если знать (благодаря расчетам все того же профессора Б.Вейнберга), что 1 кВт может заменить собой 150 умеренно работающих людей, 33 тяжелоработающих или 20 очень тяжело работающих людей.

Но человек – это не только хороший генератор энергии, но и вполне сносный ее аккумулятор: он может работать, не получая пищи, в течение одних-двух суток. При массе в 75 кг взрослый мужчина способен накопить более 2–3 кВт-ч энергии (примерно 30 Вт-ч на 1 кг веса). Если пересчитать эти показатели на единицу массы, то «человеческая машина» окажется в иерархии энергий выше сжатых газов и всевозможных механических пружин. Но ниже кипящей воды. Так что с физической точки зрения не вполне понятна этимология широко распространенного определения непрофессионала – «чайник». Какой же это чайник, если он не может вскипятить стакан воды!

В культовом киберпанковском фильме «Матрица» (время действия – 2199 год, Земля) человеческие существа используются захватившими власть машинами в качестве обычных батареек. Тут создатели картины немного перемудрили. Ведь известно, что для производства одного джоуля энергии, содержащегося в пище, которую потребляет человек, затрачивается 10 Дж энергии. Машины просто не смогли бы прокормить свои биологические «батарейки». Игра не стоит свеч.

Впрочем, у этого сюжета есть варианты. Например, такой. «Скорее всего машины используют резервную мыслительную силу человечества в качестве громадного распределенного процессора для контроля над реакциями ядерного синтеза», – считает британский математик Питер Б.Ллойд. Вот это уже теплее!

Человеческий мозг, возможно, самый сложный объект во Вселенной. А вот для работы этому чуду живой «механики» нужно всего 10 Вт энергии! Правда, мозг очень привередлив в выборе топлива-пищи: просто жиры ему не подходят, хотя в 1 г жира запасено 37,7 Дж энергии. Мозгу подавай глюкозу и кислород. Видите ли, глюкоза «сгорает» полностью, не оставляя после себя в мозгу никаких «шлаков». В состоянии покоя мозг потребляет около двух третей всей циркулирующей в крови глюкозы и 45% кислорода. Снижение концентрации глюкозы в крови ниже 0,5–0,2 г/л приводит к потере сознания и коме.

На этом фоне вполне правдоподобно выглядит гипотеза, согласно которой именно особенности пищевой, то бишь энергетической, стратегии Homo sapiens’ов позволили им опередить неандертальцев в эволюционной гонке. Так, некоторые антропологи (Sorensen, Leonard, 2001) сравнивают средний уровень физических нагрузок неандертальцев с нагрузками атлетов, фермеров и грузчиков. По расчетам этих авторов, необходимые ежедневные энергетические потребности неандертальцев превышали таковые у современных эскимосов – людей с наибольшими энергетическими затратами среди современного человечества, с очень высоким уровнем основного обмена. Прокормиться было очень трудно. Исторической перспективы – никакой, увы.

А хитрые sapiens’ы взяли да изобрели приготовление пищи на огне. Сразу качественно возрастает энергетическая и питательная ценность, ее усвояемость. Не случайно приготовленная на огне пища – возможно, наиболее ранний объект кражи в обществе человека.

Как будто специально под этот случай сказал еще один поэт, Андрей Вознесенский:

источник

Методические рекомендации по самоподготовке.

Мышцы это машины, преобразующие химическую энергию в механическую работу или механическое напряжение. При укорочении мышцы во время сокращения против груза или сопротивления (изотоническое или динамическое; сокращение) производится работа. При развитии же напряжения без укорочения мышцы (изометрическое сокращение) внешняя работа не производится. Оценивая деятельность мышц, обычно учитывают только производимую ими внешнюю работу. В наиболее простом случае работа мышцы (W) по подъему груза на некоторую высоту может быть рассчитана как произведение веса груза (Р) на высоту подъема (h) и выражена в килограммометрах: W=Р h кгм.

Величина работы, производимой мышцей, зависит от внешней нагрузки на нее. При отсутствии груза (Р=0), несмотря на большую амплитуду сокращения (h), работа равна нулю.

По мере возрастания груза, внешняя механическая работа мышцы вначале увеличивается, а затем уменьшается, так как, с увеличением груза амплитуда сокращения (укорочения) уменьшается и при достаточно большой его величине укорочения мышцы совсем не происходит(h=0). Это максимальная изометрическая сила данной мышцы.

Наибольшую внешнюю работу мышца производит при средних для нее нагрузках. Это явление носит название закона или правила средних нагрузок.

Внешняя механическая работа зависит также от скорости сокращения мышцы. Наибольшая внешняя работа выполняется ею при средних скоростях укорочения. При высоких скоростях укорочения мышцы значительная часть ее энергии расходуется на преодоление внутреннего трения (вязкости). При этом чем выше скорость укорочения, тем больше внутреннее трение. При слишком медленном укорочении мышцы часть энергии идет не на укорочение, а на поддержание достигнутой степени укорочения мышцы.

Закон средних нагрузок и средних скоростей сокращения в значительной степени определяет механическую эффективность или производительность (R) мышц. При выполнении любой работы лишь часть потенциальной химической энергии превращается в механическую работу, большая же часть неизбежно переходит в тепло. Поэтому общий энергетический расход (Е) есть сумма расхода энергии на механическую работу (W) и расхода энергии на образование тепла (Н), т.е. Е=W+Н. Механическая эффективность, или производительность (R), мышечной работы (иначе — коэффициент полезного действия) представляет собой отношение (%) внешне выполненной механической работы, представленной в калориях как механическая энергия (W), к общей внешней энергопродукции (Е):

Если исследование ведется на изолированной мышце, то механическая эффективность может быть рассчитана на основании данных измерения совершенной работы (W) и энергии, проявляющейся в форме тепла. Работа и тепло в этом случае единственные формы проявления энергии. Расчет механической эффективности производится по следующей формуле:

Если исследование ведется на мышце с нормальным кровоснабжением, то расходуемая ею энергия (Е) рассчитывается по величине потребления кислорода. У изолированной мышцы механическая эффективность зависит от внешней нагрузки и скорости укорочения мышцы и может достигать 45 -50%. Наиболее высокая механическая эффективность изолированной мышцы обнаруживается при внешней нагрузке, составляющей около 50% от максимальной изометрической силы данной мышцы и при скорости укорочения около 30 % от максимальной.

Для расчета общей производительности мышечной работы у человека количество израсходованной энергии (Е) определяют по объему кислорода, потребленного во время выполнения работы и в период восстановления. В этом случае производительность рассчитывается по следующей формуле:

В этой формуле 0,49 -коэффициент эквивалентности между механической работой и объемом потребленного кислорода, т. е. при 100 %-ной производительности для осуществления 1 кгм работы необходимо 0,49 мл 02.

В данном случае определяется общая производительность, так как часть кислорода, поглощаемого сверх уровня покоя, используется не только скелетными мышцами, но и другими органами и тканями, участвующими в мышечной деятельности организма. Поэтому реальная механическая эффективность мышц в этом случае будет выше. Наиболее высокие показатели производительности у человека (20 -25%) обнаруживаются во время работы с участием большого числа мышечных групп (например, работы на велоэргометре). Производительность во время локальной мышечной работы, т. е. работы с участием небольшого числа мышц (например, сгибание -разгибание в локтевом суставе), обычно ниже, чем при работе с участием большого числа мышц (регионарная или глобальная работа).

Производительность изменяется в зависимости от условий выполнения мышечной работы, а так же уровня тренированности спортсмена. С повышением тренированности отмечается уменьшение энергетических затрат (потребления кислорода) во время выполнения одной и той же внешней работы. Это повышение производительности определяется тремя главными факторами. Во-первых, улучшается деятельность сердечно-сосудистой и дыхательной систем, обеспечивающих работающие мышцы кислородом и другими энергетическими веществами. Во-вторых, улучшается координация движений, происходит совершенствование межмышечных координаций, исчезает активность «ненужных» мышечных групп. В-третьих, повышается сила тренированных мышц, которые могут теперь выполнять более интенсивную в абсолютном значении работу, так что работа той же мощности требует относительно меньших усилий активных мышечных групп.

Важно подчеркнуть, что повышение производительности проявляется лишь у тренируемых мышц. Так, общая мышечная тренировка мало изменяет производительность при локальной мышечной работе. Иначе говоря, повышение производительности мышц в результате тренировки чрезвычайно специфично. Используя один вид упражнения, можно рассчитывать на существенное повышение производительности при выполнении только этого вида упражнения.

Мышечная сила.

Сила мышцы может быть определена как максимальное напряжению, которое она развивает в условиях изометрического сокращения.

Измерение мышечной силы у человека осуществляется при произвольном напряжении мышц (например, динамометрия). Поэтому когда говорят о мышечной силе человека, практически всегда речь идет о максимальной произвольной мышечной силе, т. е. о суммарной величине изометрического напряжения (точнее — о суммарном моменте) группы мышц при максимальном произвольном усилии испытуемого. Максимальная произвольная мышечная сила зависит от двух групп факторов, которые можно обозначить как мышечные (периферические) факторы и координационные (нервные) факторы.

К мышечным (периферическим) факторамотносятся:

· механические условия действия мышечной тяги – плечо рычага действия мышечной силы и угол приложения этой силы к костным рычагам;

Этот фактор менее всего зависит от желаний или возможностей человека, его анатомические особенности определены геномом, а условия, при которых следует развить максимальную силу, специально создаются разве что на соревнованиях. Однако если ничего не мешает, человек или другой организм будет стремиться занять наиболее выгодное (удобное) положение для получения максимального результата движения (прыжка, удара, толчка и т.д.).

· поперечник активируемых мышц, так как при прочих равных условиях проявляемая мышечная сила тем больше, чем больше суммарный поперечник произвольно сокращающихся мышц.

Это, пожалуй, самый широко обсуждаемый фактор, и чаще всего естественно и искусственно изменяемый фактор. Действительно, максимальная сила мышцы зависит от числа мышечных волокон, составляющих данную мышцу, и от толщины этих волокон. Число и толщина их определяют толщину мышцы в целом, или, иначе, площадь поперечного сечения мышцы (анатомический поперечник). Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы. Она измеряется в кг/см 2 . Анатомический поперечник определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине, а именно перпендикулярно ходу волокон, что важно учитывать при расчете относительной силы для мышц с косым расположением волокон.

Поперечный разрез мышцы, перпендикулярный ходу ее волокон, позволяет получить физиологический поперечник мышцы. Для мышц с параллельным ходом волокон физиологический поперечник совпадает с анатомическим, Отношение максимальной силы мышцы к ее физиологическому поперечнику называется абсолютной силой мышцы. Она колеблется в пределах 4 — 8 кг/см 2 .

Поскольку сила мышцы зависит от ее поперечника, увеличение последнего сопровождается ростом силы данной мышцы. Увеличение мышечного поперечника в результате мышечной тренировки называется рабочей гипертрофией мышцы. Мышечные волокна, являющиеся высокоспециализированными дифференцированными клетками не способны к делению с образованием новых волокон. Рабочая гипертрофия мышцы происходит отчасти за счет продольного расщепления, а главным образом за счет утолщения (увеличения объема) мышечных волокон.

Можно выделить два основных типа рабочей гипертрофии мышечных волокон. Первый тип (саркоплазматический) – утолщение мышечных волокон за счет преимущественного увеличения объема саркоплазмы, т. е. несократительной части мышечных волокон. Этот тип гипертрофии приводит к повышению метаболических резервов мышцы: запасов гликогена, безазотистых веществ, креатинфосфата, миоглобина и др. Значительное увеличение числа капилляров в результате тренировки также может в какой-то мере вызывать некоторое утолщение мышцы.

Первый тип рабочей гипертрофии мало влияет на рост силы мышц, но зато значительно повышает способность их к продолжительной работе, т. е. выносливость.

Второй тип рабочей гипертрофии (миофибриллярный) связан с увеличением объема миофибрилл, т. е. собственно сократительного аппарата мышечных волокон. При этом мышечный поперечник может увеличиваться не очень значительно, так как в основном возрастает плотность укладки миофибрилл в мышечном волокне. Второй тип рабочей гипертрофии ведет к значительному росту максимальной силы мышцы. Существенно увеличивается и абсолютная сила мышцы, тогда как при первом типе рабочей гипертрофии она или совсем не изменяется или даже несколько уменьшается.

Преимущественное развитие первого или второго типа рабочей гипертрофии определяется характером мышечной тренировки. Вероятно, длительные динамические упражнения с относительно небольшой нагрузкой вызывают рабочую гипертрофию главным образом первого типа (преимущественное увеличение объема саркоплазмы, а не миофибрилл). Изометрические упражнения с применением больших мышечных напряжений (более 2/3 от максимальной произвольной силы тренируемых мышечных групп), наоборот, способствуют развитию рабочей гипертрофии второго типа (миофибриллярной гипертрофии).

· исходная длина мышц, при которой начинается её сокращение;

Читайте также:  Чем полезен глинтвейн при простуде

Для развития максимальной силы мышца перед началом сокращения должна быть в состоянии длины покоя, то есть максимально расслаблена, но не растянута (Рис.2.А). Этот фактор специально учитывают спортсмены в тех видах спорта, где необходим высокий силовой результат. Например, тяжелоатлеты непосредственно перед поднятием штанги пытаются максимально расслабить мышцы, интенсивно встряхивая верхними и нижними конечностями.

Действительно, сточки зрения теории скользящих нитей (см. предыдущее занятие) при сокращении тонкие нити протягиваются (скользят) вдоль толстых. Усилие, которое при этом развивается, будет определяться исходной степенью перекрывания толстых и тонких нитей в саркомере.

Если исходная длина мышцы больше длины покоя (мышца исходно растянута) степень перекрывания головок миозина с нитями актина уменьшается (Рис. 2Б). Другими словами часть головок миозина еще в покое не контактирует с актином, а значит и не участвует в сокращении. Усилие, развиваемое сокращающейся мышцей, при этом снижается.

Если исходная длина мышцы меньше длины покоя (мышца исходно сокращена, а значит укорочена), то расстояние на которое саркомер, а следовательно и мышца может укоротиться при сокращении уменьшается (Рис. 2В).

Рис. 2. Варианты исходной длины саркомера перед началом сокращения. Внутреннее напряжение мышцы в таких условиях может быть очень большим, но невозможность укоротиться не позволит получить максимальный силовой результат.

К координационным (нервным) факторам относится совокупность центральнонервных координационных механизмов управления мышечным аппаратом, которые можно разделить на две группы: механизмы внутримышечной и межмышечной координации.

Механизмы внутримышечной координации, регулирующие напряжение конкретной мышцы мы подробно рассмотрели выше. Напомним для получения максимального результата сокращения, в нашем конкретном случае силового результата, необходимо, вопервых – одновременная активация максимального числа двигательных единиц данной мышцы, т.е. активация максимально большого числа мотонейронов иннервирующих мышцу. Во-вторых, – режим полного тетануса у всех двигательных единиц, т.е. оптимальная частота импульсации этих мотонейронов. И в-третьих совпадение во времени активности разных двигательных единиц одной мышцы, т.е. не только максимальная но и одновременная активация мотонейронов иннервирующих мышцу. Это особенно важно в условиях тетанического сокращения.

Механизмы межмышечной координации координируют и согласуют сокращения всех мышц обеспечивающих движение, что так же влияет на показатель максимальной произвольной силы. В частности, совершенство межмышечной координации проявляется в правильном выборе активируемых мышц-синергистов, в адекватном ограничении активности мышц-антагонистов данного сустава и усилении активности мышц-антагонистов, обеспечивающих фиксацию смежных суставов и т. п.

Т.о., управление мышцами в случае, когда требуется проявить максимальную произвольную силу, является сложной задачей для центральной нервной системы. Поэтому, в обычных условиях, максимальная произвольная сила тех или иных групп мышц меньше, чем их максимальная сила.

Разница между максимальной силой мышц и их силой, проявляемой при максимальном произвольном усилии, называется силовым дефицитом.

Различие между максимальной силой и произвольной максимальной силой данной мышечной группы (силовой дефицит) тем меньше, чем совершеннее центральное управление мышечным аппаратом.

Величина силового дефицита зависит от трех факторов:

· психологического состояния испытуемого, так при некоторых эмоциональных состояниях человек может проявлять такую силу, которая намного превышает его максимальные силовые возможности в обычных условиях. У спортсменов такие состояния могут возникать во время соревнований. При этом положительный эффект (уменьшение силового дефицита) более выражен у нетренированных испытуемых и слабее или совсем отсутствует у хорошо тренированных спортсменов, например тяжелоатлетов;

· количества одновременно активируемых мышечных групп, при одинаковых условиях измерения величина силового дефицита, по-видимому, тем больше, чем больше число одновременно сокращающихся мышечных групп.

· степени совершенства произвольного управления ими. Показано, например, что изометрическая тренировка, проводимая при определенном положении конечности, может вызвать значительное повышение максимальной произвольной силы, измеряемой в том же положении. Если измерения силы проводятся при других положениях конечности, то прирост мышечной силы оказывается незначительным или отсутствует совсем. Если бы увеличение силы зависело лишь от прироста поперечника тренируемых мышц, то оно должно бы обнаружиться при измерениях в любом положении конечности. Однако увеличение произвольной мышечной силы выявляется в основном при измерениях в определенной (тренируемой) позе. Это означает, что в данном случае прирост силы обусловлен более совершенным, чем до тренировки, центральным управлением мышцами, т. е. совершенствованием координационных (нервных) механизмов.

К одной из разновидностей мышечной силы относят так называемую взрывную силу, которая характеризует способность к быстрому проявлению мышечной силы. Она в значительной мере определяет, например, высоту вертикального прыжка или прыжка в длину с места, переместительную скорость на коротких отрезках бега с максимально возможной скоростью и др. В качестве показателей взрывной силы используют отношение максимальной проявляемой силы к времени ее достижения или времени достижения половины этой силы. Показатели взрывной силы мало зависят от максимальной произвольной изометрической силы соответствующих мышечных групп. Так, изометрические упражнения, увеличивая статическую силу, незначительно изменяют показатели прыгучести (вертикального прыжка или прыжка с места в длину). Следовательно, физиологические механизмы, ответственные за взрывную силу, отличны от механизмов, определяющих статическую силу. Среди координационных факторов важную роль в проявлении взрывной силы играет характер импульсации мотонейронов активных мышц — частота их импульсации в начале разряда и синхронизация импульсации разных мотонейронов.

Среди «мышечных» факторов определенное значение, видимо, имеют скоростные сократительные свойства мышечных волокон.

Физиологическое содержание утомления. Теории утомления. Субъективные и объективные критерии утомления

Проблема утомления считается актуальной общебиологической проблемой, представляет большой теоретический интерес и имеет важное практическое значение для деятельности человека в труде и спорте

Первую попытку решения проблемы утомления предпринял Г. Галилей (1564-1642 гг.), который столкнулся с этим явлением, анализируя механику работы мышц при подъёме тела по лестнице и при ходьбе. По его мнению, мышцы утомляются в связи с тем, что им приходиться перемещать не только их собственный вес, но и вес остального тела. Поскольку сердце имеет дело только с собственным весом, оно, по мнению Галилея, неутомимо.

Позже, серьезные физиологические исследования процессов утомления развернулись только с середины XIX века, и в них сразу же обрисовались два основных направления: гуморально-локалистическая (периферическая) и центрально-нервная теории.

Исходной позицией гуморально-локалистической теории, является представление об утомлении как мышечной слабости и усталости, т. е. о процессах, происходящих под влиянием работы, прежде всего, в самой мышце. Самые известные теории этого направления: теория «отравления» немецкого учёного Э. Пфлюгера (1872), теория «истощения» М. Шиффа (1868, Швейцария), «обменная теория» английского исследователя А. Хилла (1929) и др. сегодня имеют только исторический интерес.

Появление центрально-нервной теории утомления связано с работами И. М.Сеченова и И.П. Павлова. Сегодня признаны две группы теорий, на основании которых первичными считаются изменения в нервных центрах. Согласно одной из них – утомление результат гипоксических, (т. е. связанных с недостаточностью кислородного снабжения), нарушений в нервных структурах и, прежде всего, медиаторного обмена и химических процессов возникновения и передачи возбуждений. Суть второй состоит в проявлении запредельного торможения в нервных клетках на различных уровнях ЦНС при выполнении напряженной мышечной работы. Разработка этой теории явилась важным шагом в раскрытии механизмов, предохраняющих нервную систему, а через неё весь организм от истощения, результатом которого может стать переутомление и перетренированность.

Однако центрально-нервная теория не позволяет объяснить многочисленные факты, характерные для развития утомления при напряженной мышечной деятельности. Например, показано, что даже в состоянии глубокого утомления работа может быть продолжена, если изменить её интенсивность и особенно характер её обеспечения даже при сохранении состава работающих мышц. Значит, в нервных центрах не наступало ни торможения, ни истощения, т.е. неотъемлемых механизмов утомления согласно центрально-нервной теории.

Согласно разработанной В. В. Розенблатом (1975) центрально-корковой теории, начальным звеном утомления при мышечной работе человека являются изменения «кортикальных центров». Утомление клеток этих центров приводит, с одной стороны, к нарушению контролируемой ими сложнейшей координации процессов, а с другой – меняет характер установочных влияний коры мозга и связанных с ней нижележащих образований на исполнительные органы.

Вопрос о правильной трактовке процесса утомления долгое время оставался дискуссионным. Ныне утомление рассматривается как особый вид функционального состояния организма, временно возникающий под влиянием продолжительной и интенсивной физической или умственной работы, проявляющийся в дискоординации двигательных и вегетативных функций и приводящий к временному снижению работоспособности и.

Снижение работоспособности можно считать одним из основных, объективных критериев развития утомления.

Работоспособность — потенциальная способность человека на протяжении заданного времени и с определенной эффективностью выполнить максимально возможное количество работы. Работоспособность человека зависит от уровня его тренированности, степени закрепленности рабочих навыков и опыта, его физического и психического состояния и других факторов. На протяжении рабочей смены работоспособность меняется в широких пределах, её изменения включают несколько фаз: фаза врабатывания, фаза устойчивой работоспособности, фаза снижения работоспособности, фаза утомления.

Проявлениями снижения работоспособности являются изменения количественных и качественных показателей работы, а также физиологических функций во время работы или в ответ на предъявление специальных тестов.

Снижение работоспособности связано с влиянием как внешних, так и внутренних факторов. Среди внешних факторов ведущее значение имеют условия окружающей среды и степень физиологической рациональности организации трудового процесса (особенности режимов труда и отдыха, рабочей позы и рабочего места, характер организации труда с точки зрения эргономики и др.). Из внутренних факторов выделяют такие, как мотивация и эмоциональная сторона труда, уровень функциональной активности в момент работы, величина физической подготовленности человека, особенности его личности и др.

Вопросами изучения механизмов повышения работоспособности, организации и обоснования условий для рационализации труда обеспечения производственного обучения занимается прикладная физиология труда

Утомление, обычно сопровождается чувством усталости; появление которого можно считать субъективным критерием утомления. Следует видеть разницу между утомлением – являющимся сложным физиологическим процессом и усталостью являющейся чувством, появление которого обусловлено потребностью во сне и которое, в норме, после сна исчезает.

Усталость возникает параллельно с развитием утомления и отражает совокупность изменений физических, биохимических и психофизиологических функций, возникающих во время длительной или интенсивной работы, и вызывает желание либо прекратить ее, либо снизить нагрузку. Однако, надо иметь в виду, что в детстве, особенно раннем, чувство усталости может формироваться позже (и иногда значительно позже) начала развития утомления, что и обеспечивает во многом удивительную физическую активность детей. Эту особенность следует учитывать при планировании режима дня ребенка, организации занятий по физической подготовке и обеспечении отдыха

Таким образом, биологическая роль утомления состоит в своевременной защите организма от истощения при длительной или напряженной мышечной работе. Такая защита может проявляться по-разному. Так, у низших животных утомление развивается относительно медленно, но достигает большей глубины, чем у высших животных. У высших животных, формируются активные механизмы восстановления в ответ на развитие утомления.

Наиболее сложно утомление протекает у человека. Это связано с тем, что и в развитии утомления и в обеспечении восстановления у человека особую роль играют социальные факторы. Физиологические сдвиги при резко выраженном утомлении носят черты стрессовой реакции, сопровождающейся нарушением постоянства внутренней среды организма. В то же время, повторное утомление, не доводимое до чрезмерного, является средством повышения функциональных возможностей организма.

Виды утомления.

Единая классификация видов утомления, ввиду сложности процесса и вовлечения в него многих систем организма, затруднительна. В настоящее время специалисты при изучении проблемы утомления учитывают такие понятия этого процесса, как локализация и механизм. Такой подход берет своё начало с 60-х годов XX столетия, когда ученые сошлись во мнении о том, что локализация и механизмы утомления определены функциональным состоянием различных органов и систем организма, их координационными взаимоотношениями и обусловлены характером выполняемой работы и другими факторами.

В зависимости от преимущественного содержания работы – умственной или физической выделяют нервно-психическое (умственное, центральное) и физическое (мышечное) утомление.

Нервно-психическое утомление приводит к снижению трудоспособности из-за нарушений центральной нервной регуляции. Среди типичных симптомов следует отметить замедленную передачу информации, ухудшение мыслительных функций и процессов решения задач, ослабление сенсорного восприятия и сенсомоторной функции. Такое утомление сочетается с отвращением к работе и сниженной работоспособностью, а иногда при этом возникают склонность к депрессии, беспричинной тревоге или пониженной активности, а также раздражительность и эмоциональная лабильность.

Ситуации, вызывающие нервно-психическое утомление, включают:

· длительную умственную работу, требующую усиленной концентрации, чрезвычайного внимания или тонкого навыка;

· однообразную работу в монотонном ритме;

· шум, слабое освещение и температуру, неудобные для труда;

· конфликты, озабоченность или отсутствие интереса к работе;

· заболевание, боль и недостаточное питание.

Утомление центрального происхожденияв отличие от мышечного утомления может исчезать мгновенно при некоторых условиях, например когда:

· одна утомляющая деятельность сменяется другой;

· организм попадает в состояние тревоги при страхе или угрожающей опасности,

· интерес к работе возобновляется благодаря новой информации,

· изменяется аффективное состояние (настроение).

Тот факт, что нервно-психическое утомление может исчезать столь внезапно, свидетельствует, что ни накопление «веществ утомления», ни опустошение энергетических резервов не являются критическими факторами. Скорее, нервно-психическое утомление связано с ретикулярной формацией, активность которой изменяется не только при интенсивной умственной работе, но и под влиянием однообразной деятельности. Утомление, вызываемое однообразием, можно снизить путем изменения канала восприятия информации, хотя оно не способно предотвратить утомление при более длительных воздействиях. Например, ‘ при дальних поездках на автомобиле по шоссе нервно-психическому утомлению можно противостоять, слушая радио.

Возникновение нервно-психического утомления при физической работе может быть вызвано афферентной импульсацией от работающих мышц к головному мозгу, которая не только способствует осознанию того, что мышцы устают (или даже болят), но и подавляет функцию коры (вызывая, таким образом, нервно-психическое утомление).

Физическое утомление связано, прежде всего, с развитием функциональных нарушений в ходе непосредственной мышечной деятельности. При этом, имеет место очень сложный комплекс изменений в возбудимой системе мышцы и, прежде всего, ее двигательных единиц, в миофибриллах и других белковых системах обеспечивающих сокращение, а также ходе энергетических процессов, обусловливающих активность миофибрилл. При развитии утомления меняется возбудимость мышцы, что находит свое выражение в уменьшении интенсивности токов действия и увеличении их продолжительности. При утомлении также заметно уменьшается скорость распространения возбуждения.

Кроме того, физическое утомление сопровождается такими нарушениями, как снижение силы, точности, согласованности и ритмичности движений, что говорит об участии в развитии физического утомления нервных структур, регулирующих движение.

В связи с тем, что обнаруживается принципиальная общность физического и умственного утомления, – обе формы утомления сочетаются при тяжелой работе, и их нельзя строго отделить одну от другой – приобретает большое распространение классификация, основанная на преимущественной локализации утомления в звеньях нервной системы, обеспечивающей деятельность человека. Так, различают сенсорное утомление и его разновидности перцептивное, информационное и эффекторное.

Сенсорное утомление развивается в результате длительного или интенсивного воздействия раздражителя (например, сильный шум, свет), при котором первичные изменения возникают в сенсорных системах, начиная от рецептора и заканчивая корковым концом анализатора.

Перцептивное утомление, локализованное преимущественно в корковом конце анализатора, связано с трудностью обнаружения сигнала (например, при больших помехах, при его малой интенсивности, трудности дифференцирования).

Информационное утомление развивается вследствие недостаточности информации или при информационной перегрузке, когда наибольшая нагрузка падает на динамику межцентральных отношений, заключающуюся в замыкании временных связей между различными структурами в центральной нервной системе и оживлении ассоциативных связей, позволяющих правильно отразить в сознании объективную картину внешней среды.

Эффекторное утомление возникает при локализации изменений преимущественно в отделах центральной нервной системы, формирующих двигательный акт, т.е. имеющих прямое отношение к физическому утомлению.

Кроме того, отдельно можно выделить эмоциональное утомление, проявляющееся снижением эмоциональных реакций и эмоционального тонуса; вызывается воздействием сверхсильных или монотонных раздражителей.

В связи с тем, что при трудовой деятельности чаще сочетаются все перечисленные изменения, часто выделяют общее утомление, подчёркивая при этом наиболее выраженные нарушения в центральной нервной системе. Такое утомление, возникает при физической работе, в которую вовлечены обширные мышечные группы. Для общего утомления характерно нарушение регуляторной функции ЦНС, координации двигательной и вегетативной функций, снижение эффективности волевого контроля за качеством выполнения движений. Общее утомление сопровождается расстройствами вегетативных функций: неадекватным нагрузке увеличением ЧСС, падением пульсового давления, уменьшением легочной вентиляции. Субъективно это ощущается как резкий упадок сил, одышка, сердцебиение, невозможность продолжать работу,

Если чрезмерная нагрузка падает не на весь организм, а только на отдельные мышечные группы, развивается так называемое локальное утомление. В отличие от общего утомления при локальном утомлении страдает не столько центральный аппарат управления, сколько периферические структурные элементы регуляции движений: терминали двигательных нервов, нервно-мышечный синапс. Особо отметим, что нарушения в нервно-мышечной передаче возбуждения развиваются задолго до того, как сами исполнительные приборы (мышцы) перестают нормально функционировать.

Утомление развивается в несколько фаз. В скрытой,компенсируемой, фазе развития утомления сохраняется высокая работоспособность, поддерживаемая волевыми усилиями, но экономичность работы при этом падает. Продолжение ее вызывает некомпенсируемое, явное, утомление. Главным признаком некомпенсируемого утомления является снижение работоспособности при угнетении функций внутренних органов и двигательного аппарата. Угнетается функция надпочечников, снижается активность дыхательных ферментов, интенсивные процессы анаэробного энергообмена ведут к накоплению недоокисленных продуктов и падению резервной щелочности крови,

При резком падении работоспособности, когда физически невозможно продолжать работу, человек отказывается от нее (например, спортсмен сходит с дистанции, прекращает тренировку).

И, наконец, возможна классификация на основе клинических проявлений утомления.

Ø Легкое утомление — состояние, которое развивается даже после незначительной по объему и интенсивности мышечной работы. Оно проявляется в виде усталости. Работоспособность при этой форме утомления, как правило, не снижается.

Ø Острое утомление — состояние, которое развивается при предельной однократной физической нагруже.При этом состоянии отмечается слабость, резко снижается работоспособность и мышечная сила, появляются атипические реакции сердечно-сосудистой системы на функциональные пробы. Острое утомление чаще развивается у слабо тренированных спортсменов. Клинические проявления его: бледность лица, тахикардия, повышение максимального артериального давления (АД) на 40—60 мм рт. ст., резкое снижение минимального АД (феномен бесконечного тона), на ЭКГ нарушение обменных процессов сердца, повышение общего лейкоцитоза крови, иногда белок в моче.

Ø Перенапряжение — остро развивающееся состояние после выполнения однократной предельной тренировочной или соревновательной нагрузки на фоне сниженного функционального состояния организма (перенесенное заболевание, хронические интоксикации — тонзиллит, кариес зубов, гайморит и др.). Чаще это состояние развивается у квалифицированных спортсменов, которые способны благодаря хорошим волевым качествам выполнять большие нагрузки на фоне утомления. Клинически перенапряжение проявляется общей слабостью, вялостью, головокружениями, иногда обморочными состояниями, нарушением координации движений, сердцебиением, изменением АД, нарушением ритма сердца, увеличением печени (болевой печеночный синдром), атипическими реакциями сердечно-сосудистой системы на нагрузку. Эта форма утомления длится от нескольких дней до нескольких недель. Требуется вмешательство врача и тренера.

Ø Перетренированность — это состояние, которое развивается у спортсменов при неправильно построенном режиме тренировок и отдыха (хроническая физическая перегрузка, однообразие средств и методов тренировки, нарушение принципа постепенности увеличения нагрузок, недостаточный отдых, частые выступления в соревнованиях), особенно на фоне очагов хронической инфекции, соматических заболеваний.

Перетренированность характеризуется выраженными нервно-психическими сдвигами, ухудшением спортивных результатов, нарушением деятельности сердечно-сосудистой и нервной систем. Все сдвиги в реакциях резко поражены, отмечаются изменения ЭКГ, снижение сопротивляемости организма к инфекциям. Эта форма утомления требует вмешательства врача и тренера.

Ø Переутомление — это уже патологическое состояние организма известно еще как хроническое утомление. Оно чаще всего проявляется в виде невроза, наблюдается, как правило, у спортсменов с неустойчивой нервной системой, эмоционально впечатлительных, при чрезмерных физических нагрузках. Клинические проявления похожи на те, что свойственны перетренировке, но более четко выражены. Спортсмены апатичны, их не интересуют результаты участия в соревнованиях, у них нарушен сон, появляются боли в сердце, расстройство пищеварения, половой функции, тремор пальцев рук. Это состояние требует вмешательства врача и тренера.

Дата добавления: 2016-10-23 ; просмотров: 862 | Нарушение авторских прав

источник

Источники:
  • http://studfiles.net/preview/1635575/page:17/
  • http://helpiks.org/1-109689.html
  • http://studopedia.su/12_84296_mishechnie-tkani-stroenie-i-funktsii-mishechnogo-volokna-preobrazovanie-energii-pri-mishechnom-sokrashchenii-kpd-mishechnogo-sokrashcheniya.html
  • http://artemu238.livejournal.com/12455.html
  • http://www.stroitelstvo-new.ru/physiology/koefficient-poleznogo-deistviya-v-rabote-cheloveka.shtml
  • http://www.ng.ru/style/2009-03-17/16_fizika.html
  • http://lektsii.org/7-85240.html