Меню Рубрики

Протерозойская эра полезные ископаемые

  • Хронологические уточнения
  • Климат в протерозое
  • Эволюция жизни в протерозое
  • Полезные ископаемые протерозоя

От автора сайта (нужно еще проверить)

Когда в научный обиход вводились первые геологические эры, археозой назывался азоем (безжизненной эрой), а протерозой — эозоем (эрой ранней жизни). То есть, эозой связывали с зарождением жизни, а рубежом между азоем и эзоем — появление остатков организмов или минералов, свидетельствующих об их существовании.

Потом выяснили, что 1,9 млрд лет назад (через 600 млн лет после начала «эозоя») концентрация кислорода в земной атмосфере возросла до 1% — это назвали «кислородной катастрофой». Данный факт свидетельствовал о том, что появились аэробные (кислорододышащие) организмы [т.е., возникло царство животных] — значит, жизнь уже имела длинную эволюцию и возникла еще в «азое». Пришлось пересмотреть взгляд на первые эры Земли и назвать их археозоем («эрой древней жизни») и протерозоем («эрой ранней жизни»). В последующих исследованиях были зарегистрированы первые следы кислорода в атмосфере Земли, датированные 2,2-2,3 миллиарда лет назад. А в наше время выяснили, что уже в начале протерозоя концентрация кислорода достигла 19% от современной.

[Получается, что возникновение и развитие начальных форм жизни следует перенести полностью в археозой, что и было потом сделано. Однако, исходя из аксиомы, что жизнь возникла на Земле, пришлось из архея выделить начальную фазу, когда жизни не было — катархей. Понятно, что тогда Земля была «жизне негостеприимной», и эту фазу выделять нужно. Потом выяснилось, что Земля была «негостеприимной» всего-то примерно 100 млн. лет, т.е., жизнь «возникла» на ней практически сразу (тогда стоило ли вообще выделять катархей?).

Но могла ли жизнь с таким сложным «изобретением» как генетический код, возникнуть всего за полтора миллиарда лет архея?? Ясно, что она была привнесена извне или содержалась еще в протопланетной пыли. Таким образом, архей следует считать временем не появления, а вызревания жизни.

А что, если вообще галактики — «живые», и изрыгаемые ими рукава — результат «обмена веществ»? :)) Этакие антиэнтропийные «термоядерные организмы», поедающие окружающие шаровые скопления из лёгких атомов, и насыщающие Космос тяжёлыми атомами и органическими молеулами, которые потом слипаются в вездесущие кометы, формирующие планеты и жизнь на них?]

Что касалось рубежа окончания протерозоя, то им считалось появление огромного количества кремниесодержащих остатков организмов, что говорило о бурном расцвете жизни и появлении скелетных форм — в том числе твёрдых покрытий одноклеточных. Считалось, что в этой следующей за протерозоем эре (палеозое) появились многоклеточные животные. Этот взрыв видообразования назвали «кембрийским скачком» — по кембрию — первому периоду палеозоя. Поэтому протерозойскую и предыдущую архейскую эры назвали криптозоем (эрой «скрытой жизни»), или докембрием. В противоположность ему все последующие эры, начиная с палеозоя, назвали фанерозоем (эрой «явной жизни»). Так появились новые хронологические отрезки истории Земли — эоны, включающие в себя по несколько эр.

В 1975 году протерозой делили на ранний (начался 2600±100 млн. лет назад) и поздний (начался 1650±50 млн. лет назад). Иногда из раннего протерозоя выделяли средний протерозой (примерно 1,9 — 1,6 млрд. лет назад) — вероятно, считая его началом упомянутую «кислородную катастрофу».

Затем раннему протерозою (не выделяя из него «средний») дали название карелий (или афебий, 2,5-1,65 млрд лет назад), а позднему — рифей (или инфракембрий, 1,65-0,57 млрд лет назад). С афебием связали появление первых аэробных прокариот, а с инфракембрием — первых эукариот.

Далее выяснилось, что многоклеточные организмы возникли еще в конце протерозоя — просто они были мягкотелыми и дали мало палеонтологических следов. Поэтому из рифея выделили вендский период — время появления бесскелетных многоклеточных животных (620-600 млн лет назад). В последствии этот период назвали эдиакарским, который характеризовался особой «эдиакарской фауной» — поэтому эдиакару иногда называют «эрой многоклеточных». Рифей без венда был разделён на ранний, средний и поздний эпохи, каждая из которых по длительности примерно была равна палеозойской эре (около 0,3 млрд. лет).

Дальнейшее развитие палеонтологии привело к тому, что протерозой выделили в отдельный эон, разделив на 3 эры (и придвинув на 100 илн. лет). Ранний протерозой назвали палеопротерозойской эрой (2,5 — 1,6 млрд лет назад), выделив из него в 2008 году эопротерозой (2,43 — 2,06 млрд лет назад) — почти соответствует нижнекарельской эротеме палеопротерозойской эонотеме. Поздний же протерозой (рифей) теперь разделили на мезопротерозой (1,6 — 1,0 млрд лет назад) и неопротерозой (1,0 — 0,542 млрд лет назад). Каждую из этих эр разделили на 3-4 периода, в среднем, по 200 миллионов лет. [Мне кажется, новейшая градация протерозоя несколько схематичной. Чем, например, маркируются периоды его эр?]

В позднем рифее (1050-630 млн. лет назад) и в раннем венде (630-580 млн. лет назад) было два крупнейших ледниковых периода сковавших всю планету льдом, объединенных одним названием – Сноубол («снежок»). Этот период неопротерозоя назвали криогением.

В протерозойскую эру от колониальных одноклеточных организмов, клетки которых стали выполнять различные функции, произошли первые многоклеточные организмы. Ими были губки, археоциаты (похожие на губок животные).

В отложениях протерозоя мы уже находим следы ползания червей, отпечатки кишечнополостных, иглы губок, раковины простейших. Эволюционный процесс проходит от простых к сложным организмам. Следовательно, возникновение протерозойских существ было невозможно без длительного эволюционного процесса, который ведет свое начало от комочков цитоплазмы, появившихся в архейских морях.

Также в протерозойских отложениях был найден углеобразный материал шунгит. Это свидетельствует о появлении в протерозойской эре растений, из остатков которых образовался уголь. Отложения мрамора позволяют сделать вывод о том, что в протерозое жили животные с известковыми раковинами [есть и архейский мрамор]. С течением времени образовавшиеся из отложений этих раковин известняки превратились в мрамор.

Первыми из известных в настоящее время групп существ в протерозойских морях были, по видимому, жгутиковые, находящиеся на грани между растительным и животным миром. От них произошли водоросли, грибы и все группы животного мира.

Жизнь в то время была тесно связана с морем. На суше организмов не было, кроме, возможно, неизвестных нам бактерий. [По другим данным, уже в протерозое за счет деятельности прокариот на затопляемых участках суши образовалась почва — другой ароморфоз, подготовивший выход растений на сушу в последующие эпохи].

С протерозойскими отложениями связано множество полезных ископаемых: железные руды, мрамор, графит, никелевая руда, пьезокварц, каолин, золото, слюда, тальк, молибден, медь, висмут, вольфрам, кобальт, радиоактивные минералы, драгоценные камни [многие из них — органического происхождения]. Ранний протерозой был временем выдающегося железорудного накопления [«железные бактерии»] (например, Кривой Рог, Курская магнитная аномалия). На юге Африки в это же время образовывались золото-урано-пиритовые конгломераты. Поздний протерозой известен железными рудами (например, Урал), медно-полиметаллическими рудами (например, Австралия), а также урановыми, кобальтовыми, медными, оловянными рудами.

Например, на юге территории Украины в то время [в начале протерозоя?] было мелкое море, окруженное со всех сторон горными хребтами. Горы выветривались, а продукты выветривания откладывались на дне моря. В конце протерозоя благодаря горообразовательным процессам на месте моря возникли горы, а осадочные отложения метаморфизировались. Так образовалось месторождение железных руд Криворожского бассейна.

[А может быть дело не в выветривании окружающих гор, а в отложении на дно моря протерозойской «гемоглобиновой» живности? Может быть Марс нам демонстрирует этот протерозой — его красный грунт и есть морские отложения железных бактерий. А протерозойская медь уже появилась за счет отложений сине-зеленых водорослей и растений?]

источник

Протерозойская эра, следующая после эры архейской, длилась 2 млрд лет. Протерозойская эра, по мнению ученых, делится на три периода:

  1. Палеопротерозой (2,5 млрд лет – 1,6 млрд лет);
  2. Мезопротерозой (1,6 млрд лет – 1 млрд лет);
  3. Неопротерозой (1 млрд лет – 542 млн лет).
Продолжительность периода
Периоды протерозойской эры
2,5 – 2,3 млрд.л.н. Сидерий Палеопротерозой Протерозойская эра
2,3 млрд – 2050 млн.л.н. Риасий
2050 млн – 1800 млн.л.н. Орозирий
1800 млн – 1600 млн.л.н. Статерий
1600 млн – 1400 млн. л.н. Калимий Мезопротерозой
1400 млн – 1200 млн.л.н. Эктазий
1200 млн.л.н. – 1 млрд.л.н. Стений
1 млрд.л.н. – 850 млн.л.н. Тоний Неопротерозой
850 млн.л.н. – 635 млн.л.н. Криогений
635 млн.л.н. – 542 млн.л.н. Эдиакарий

Первый период протерозойской эры продолжается 900 млн лет и, в свою очередь, делится на 4 этапа:

  • Сидерий. Продолжительность составляет 200 млн лет;
  • Риасий. Длится 250 млн лет;
  • Орозирий. Занимает временной промежуток в 250 млн лет;
  • Статерий. Продолжается 200 млн лет.

Вначале палеопротерозоя происходит кислородная революция. Огромная часть живых микроорганизмов на нашей планете в этот временной интервал является анаэробами. Для них кислород – яд. В результате переизбытка кислорода в атмосфере произошло многочисленное вымирание живых существ. На планете остаются лишь те микроорганизмы, которые осуществляют фотосинтез. А также те, которые живут в среде, где отсутствует кислород. Следствием этих событий является Гуронское оледенение, которое длится около 300 млн лет. В конце палеопротерозоя образуется континент Колумбия, формируются горные массивы. В период орозирия в Землю врезаются 2 крупных астероида, следы от которых мы можем наблюдать и сейчас. Один из них падает в Канаде и образует кратер Садбери. След от второго находится в ЮАР – кратер Вредефорт.

Средний период протерозойской эры длится 600 млн лет и состоит из 3 этапов:

  • Калимий (200 млн лет);
  • Эктазий (200 млн лет);
  • Стений (200 млн лет).

Распадается материк Колумбия. Его части найдены в современных Америке, Африке, Сибири, Корее. Формируется новый суперматерик Родиний, который распадается в конце мезопротерозоя. Активно развиваются процессы полового размножения у живых микроорганизмов. Происходит прогресс в эволюции живых существ – в это время у эукариот формируются половые клетки, из которых появляются новые организмы. Ученые утверждают, что именно во время мезопротерозоя были образованы геологические платформы материков, дошедшие до нашего времени. Хотя первоначально они были иных форм и находились в другой последовательности.

Последний период протерозойской эры продолжается около 460 млн лет. Состоит он из 3 этапов:

  • Тоний (150 млн лет);
  • Криогений (215 млн лет);
  • Эдиакарий (93 млн лет).

Многочисленные извержения вулканов приводят к тому, что континент Родиний распадается на 8 частей, а единый океан делится на несколько океанов. В период криогения происходит образование материка Паннотия. Еще одно важное событие криогенийского этапа неопротерозоя – второй ледниковый период, который охватывает почти всю поверхность планеты. Продолжается эволюция живых организмов. Появляются животные с мягкой телесной оболочкой и подобием скелета.

На основании обнаруженных следов от горных массивов, пустынь, морских отложений и вулканических пород ученые делают выводы о том, что климат протерозойской эры был многообразен, а на Земле происходили активные континентальные преобразования.

Климатические изменения начались приблизительно в конце палеопротерозоя. Произошло уменьшение парникового эффекта, что, в свою очередь, привело к понижению температуры в атмосфере нашей планеты. Эти события положили начало самому длительному ледниковому периоду. А за ним наступил еще один, во время которого температура воздуха на экваторе сравнялась с температурой современного Северного полюса.

Эволюция животного мира протерозойской эры начинается с окончанием оледенения. На самой верхней ступени эволюционной лестницы данной эры, по мнению ученых, стоят ракоскорпионы. Это четырехглазые существа с 12 лапами и телом, состоящим из нескольких разделов и покрытым остроконечными иглами. Грудь и голову надежно защищает крепкий панцирь. Тело ракоскорпионов заканчивается прямым шипом, который соединен с железой, вырабатывающей яд. Этот шип используется животными и для защиты от подобных им существ, и для нападения на более слабых. Размер наиболее крупных особей достигал 3 метра в длину. Самые маленькие были всего 10 см. Этих хищников не останавливали даже твердые раковины брахиопод и моллюсков.

К концу неопротерозоя появляются кольчатые черви и медузы. Позже от них взяли свое происхождение двустворчатые моллюски и членистоногие.

Поскольку в период протерозойской эры на планете преобладала вода, большинство живых организмов существовало в придонных толщах океана. На суше могли выжить только бактерии, которые с легкостью акклиматизировались в новых условиях.

Одним из главных событий в эволюционном процессе стало то, что живые организмы научились взаимодействовать друг с другом для выживания в тяжелых условиях. Они начали совместную жизнь, в которой каждый микроорганизм отвечал за свою функцию. Так развивались первейшие многоклеточные представители фауны. На протяжении всей протерозойской эры клетки совершенствовались, активнее партнерствовали между собой. К середине Протерозоя живые организмы научились самовоспроизведению при половом размножении. В конце эпохи появились гидроподобные существа. К данному временному отрезку относят разделение животных, грибов и растений.

Во время протерозойской эры на поверхности Земли была голая пустыня с холодным климатом и частыми оледенениями. Лидерство прокариот сменилось на господство эукариот. Появляются водоросли, крепящиеся ко дну водоемов. В середине периода начинают развиваться низшие грибы.

Новейшими жителями океана становятся жгутиковые – организмы, стоящие на границе между фауной и флорой. Вскоре они разделятся и образуют новые виды растений и животных. После грибов появляются губки, археоциаты и прочие сложные организмы. 650 млн лет назад морские берега начинают зеленеть. Их покрывают единственные на тот момент сложные растения, схожие с водорослями. А произошло это в связи с тем, что в атмосфере Земли, насыщенной кислородом, сформировался озоновый слой, не пропускающий солнечную радиацию.

В процессе формирования осадочных отложений активное участие приняли бактерии. Самые крупные месторождения железной руды имеют органическое происхождение. Это продукты жизнедеятельности железобактерий.

К отложениям протерозойской эры относятся многочисленные залежи природных богатств – драгоценные и полудрагоценные камни, золото и серебро, железные и никелевые руды, кварц, кобальт, медь и молибден, висмут и вольфрам, различные радиоактивные минералы. На юге современной Украины в ту эпоху находился океан, окруженный горными массивами. Тысячелетиями горы выветривались и оседали на дне океана. К концу эры на его месте возник горный хребет, а осадочные отложения видоизменились. Так произошло формирование месторождения железной руды в Криворожском бассейне.

Учеными обнаружены многочисленные окаменелости протерозойской эры. Их называют «акритарх». В переводе с греческого языка это означает – неясное происхождение. Как становится понятно из названия, никто точно не может определить, что это такое. Окаменелости включают в себя частицы живших тогда организмов, которые очень сложно распознать. В некоторых окаменелостях заключены спиралевидные формы жизни, которые половина ученых идентифицирует как водоросли. Другие организмы похожи на предков современных червей. Ученым предстоит непростая работа по определению, к какому виду живых организмов относятся те или иные останки.

Более подробно периоды Протерозойской эры будут рассмотрены в следующих лекциях.

источник

Задумывались ли вы когда-нибудь над тем, что представляла собой протерозойская эра? Скорее всего, нет. Разве что из давно пройденной школьной программы кто-то вспомнит какие-то скудные данные. Например, про развитие жизни в протерозойскую эру, про формирование климата или про начало ледникового периода. Конечно, всего этого очень мало, особенно если учесть, какую роль играло это время в последующей жизни нашей планеты.

Данная статья содержит в себе массу интересной информации. А значит, читатель получит исчерпывающие ответы на многие вопросы, которые затрагивают развитие жизни на земле. Отдельно мы поговорим о необычных представителях флоры и фауны, о суровом климате, об особенностях образования различного рода полезных ископаемых.

Ученые утверждают, что данный период начался более 2600 млн. лет назад, причем погрешность в расчетах может быть немалой и составлять примерно 100 млн. лет.

По мнению специалистов, протерозойская эра на планете существовала достаточно долго, на протяжении 2 млрд. лет. Именно этот срок и сделал ее самым длительным периодом за всю историю существования нашей планеты.

Как раз тогда по поверхности планеты начали ползать черви и кишечнополостные, существовали простейшие известковые раковины. Также протерозойская эра известна в истории как период, когда зародились так называемые углевые растения.

Кроме всего прочего, данный период времени славится еще и такими дебютантами подводного мира, как жгутиковые, находившиеся на рубеже развития между животными и растительностью.

Кстати, далеко не всем известно о том, что во время эволюции, после определенного распада, некоторые частицы жгутиковых стали водорослями или грибами. Другие же, в свою очередь, постепенно превратились в представителей фауны.

Тогда же появились и микроскопические радиолярии, губки, архео­циаты, брахиоподы, брюхоногие моллюски и другие многоклеточные существа. Вершиной эволюционного развития в протерозое стали крупные хищные членистоногие, а именно — ракоскорпионы.

Архейская и протерозойская эры – это время, когда большую территорию Земли охватывало бескрайнее море. Кстати, в этот период массово появились полезные ископаемые, а Мировой океан начал обретать более или менее современный вид.

В целом ученые периоды протерозоя делят на следующие этапы:

  • Пелеопротерозой.
  • Мезопротерозой.
  • Неопреторозой.

Смело можно утверждать, что в данную эпоху климат был очень разнообразным. Подтверждает это большое количество найденных следов от гор, пустынь, озер, морей и др. Морские отложения в основном расположены в два уровня и покрыты вулканическими породами и дополнительным морским слоем. В горных породах все выглядит так, будто планету смяла могучая рука. Поэтому ученые предположили, что в протерозой происходили бурные подземные процессы.

К концу раннего протерозоя начался меняться климат Земли, а именно – уменьшился парниковый эффект. Это значительно понизило температуру поверхности планеты. К тому же Солнце светило на 10% меньше, чем сейчас.

В итоге наступил первый в ледниковый период. Затем через 1700 млн. лет пришел ещё один более масштабный, в результате которого Земля почти вся покрылась льдом. А температуры на экваторе сравнялись с температурами в современной Антарктиде. Животные протерозойской эры начали развиваться только с таянием льдов, именно тогда и наступил всплеск биоразнообразия.

Несмотря на огромные массивы льда, которые образовались под конец протерозойской эры, на Земле продолжалась активная вулканическая деятельность, температура воздуха понемногу повышалась, части материков медленно начали освобождаться от залежей льда.

Многие живые организмы протерозоя все-таки почти полностью исчезли во время вечной мерзлоты. Но, скорее всего, в Мировом океане, тропических широтах, где остались участки открытой воды со свободным доступом света и углекислого газа, по-прежнему была жизнь.

Столь глобальные оледенения больше не повторялись, ученые полагают, что это произошло из-за вновь образовывавшихся континентов, которые уже не имели приэкваториальной конфигурации.

Всем существам пришлось в протерозойскую эру сделать именно такой выбор: ходить или нет. Ученые утверждают, что с него и пошло разделение природы на растительную и животную.

Это случилось благодаря веществу хлорофиллу, возникшему в представителях флоры, т. к. он является важнейшим элементом для осуществления фотосинтеза.

Почти все живые существа смогли приспособиться к подвижному образу жизни, так как кушали других животных либо растения, а для того, чтобы добраться к выбранной и такой необходимой пище, нужно было постоянно перемещаться.

Именно так и происходило развитие жизни на земле.

Во время протерозоя наблюдалось изменение химического состава атмосферы от активного углекислотного до нейтрального. Это послужило толчком к возникновению эукариотных форм жизни, а также водорослей с обособленным ядром и др.

Широкого многообразия достигали и водоросли, считавшиеся первыми настоящими растениями. Особенно в протерозойскую эру широко развились одноклеточные, колониальные сине-зеленые водоросли, а также появились красные и зеленые.

Как можно было прийти к данному умозаключению? Все дело в том, что останки шульгита, обнаруженные археологами и приписываемые протерозою, похожи на уголь, который образовывается из растений.

В протерозойскую эру начали появляться первые черви и кишечнополостные животные. Началом для зарождения многих видов стали комочки цитоплазмы, находящиеся в морях.

Кроме того, на Земле обитали животные с известковыми раковинами. Лучшее свидетельство этому факту – обнаруженные остатки древнего мрамора. Скорее всего, первыми известковыми существами были представители семейства жгутиковых. Впоследствии природа распорядилась из них создать сразу несколько видов растений и животных.

В протерозое также образовались многоклеточные организмы из одноклеточных. Например, археоциаты или губки.

Наиболее сложными, но в тоже время и самыми совершенными живыми существами протерозоя считались так называемые ракоскорпионы. Эти хищники были закованы в своеобразную броню, хорошо вооружены и наводили настоящий ужас на все живое. Даже крепкие раковины не всегда спасали брахиопод или двустворчатых моллюсков от грозных и хищных ракоскорпионов.

Тело этих существ было усеяно длинными и очень острыми шипами, состояло из нескольких сегментов, имело сразу 6 пар конечностей. Голова и грудь полностью прятались под четырехугольным панцирем, а на мир смотрели 4 небольших глаза. На конце тела у ракоскорпионов как для защиты, так и для нападения. Их размеры варьировались от 10 см до 3 была длинная прямая игла, соединенная с ядовитой железой. Она применялась, как для защиты, так и для нападения. Их размеры варьировались от 10 см до 3 м в длину.

Читайте также:  Что полезнее льняное семя или льняная мука

Специалисты утверждают, что как морские, так и континентальные отложения протерозоя сейчас распространены на всех без исключения материках. Тысячелетиями в прогибах накапливались продукты разрушения пород, формируя толщи кварцевых песчаников, глины, карбонатные породы и др.

В конце протерозоя отлагались молассы (например, на Урале). Тогда же появились месторождения железных руд, фосфоритов. В Экваториальной Африке к породам протерозоя причисляют богатейшие месторождения руд, меди, кобальта и урана.

Современные исследования указали на еще одну причину оледенения. Возможно, массовое вымирание организмов на Земле произошло еще примерно за 16 млн. лет до предполагаемого ранее оледенения. Безудержный рост различного вида водорослей мог плохо сказаться на морских экосистемах, так как органика не успевала разлагаться в толще воды, и водоросли могли закрыть всю поверхность воды, тем самым полностью перекрыв доступ кислорода внутрь.

В итоге вышло так, что аэробные морские обитатели вымерли из-за нехватки кислорода, что могло привести к сокращению выделения углекислого газа и стало причиной внезапного похолодания. Хотя и традиционную теорию о связывании силикатами углекислого газа не отметают.

Не случись так, возможно, по-другому пошло бы и наше развитие. Протерозойская эра на самом деле послужила основой для формирования всего того, что мы имеем сейчас в окружающей нас действительности.

источник

Эон: Протерозой (542,0 ± 1,0 млн лет назад — 2,5 млрд лет назад)

Самые длительные временные интервалы в геохронологии — эоны (от греч. aion — век, эпоха). Выделяют такие Эоны, как: криптозой (от греч. cryptos — скрытый и zoe — жизнь), охватывающий весь докембрий, в отложениях которого нет остатков скелетной фауны; фанерозой (от греч. phaneros — явный, zoe — жизнь) — от начала кембрия до нашего времени, с богатой органической жизнью, в том числе скелетной фауной. Зоны не равноценны по продолжительности, так, если криптозой длился 3-5 млрд лет, то фанерозой — 0,57 млрд лет.

Архейская и протерозойская эонотемы, охватывающие почти 80% времени существования Земли, выделяются в криптозой, так как в докембрийских образованиях полностью отсутствует скелетная фауна и палеонтологический метод к их расчленению неприменим. Поэтому разделение докембрийских образований базируется в первую очередь на общегеологических и радиометрических данных.
Название происходит от греческого слова «протерос» — первичный. Слово «зой» происходит от «зоикос» — жизненный.


Второе великое горообразование (значительное уничтожение ископаемых)
Геологические условия. Интенсивный процесс осадкообразования. Позднее — вулканическая активность. Эрозия на обширных площадях. Многократные оледенения.
Главнейшие геологические события. Облик земной поверхности. Начало байкальской складчатости. Мощный вулканизм. Время бактерий и водорослей.
Наиболее распространенные полезные ископаемые. Огромные запасы железных руд, слюда, графит.
Основные этапы развития жизни. Зарождение жизни в воде. Время бактерий и водорослей.
Растительный мир. Примитивные водные растения — водоросли, грибы.
Животный мир. Различные морские простейшие. К концу эры — моллюски, черви и другие морские беспозвоночные.

Годы Вселенной (начиная с гипотетического момента Большого Взрыва 13.730.012.012 лет назад):
11.230.000.000 — начало эона Протерозоя.
___11.230.000.000-12.130.000.000 — Палеопротерозойская эра.
______11.230.000.000-11.430.000.000 — Сидерийский период.
11.230.000.000 – Сибирь и Лавренция образуют единый континент Арктика. Возникновение древнейшего и очень мелководного океана – Панталассы.
11.230.000.000-11.400.000.000 — возникла планетарная сеть разломов и трещин, заполнявшихся дайками (пластинообразными геологическими телами). Одна из них — Великая дайка в Зимбабве — имеет длину более 500 км и ширину до 10 км.
11.330.000.000 – кислородная катастрофа: появление в атмосфере свободного кислорода и изменение общего характера атмосферы с восстановительного на окислительный. После того, как поверхностные породы и газы атмосферы оказались окисленными, кислород начинает накапливаться в атмосфере в свободном виде, что приводит к образованию насыщенной кислородом атмосферы. Генетический код стал универсальным для всех живых организмов. Появление первых палеопочв, созданных деятельностью наземных низших растений.
______11.430.000.000-11.680.000.000 — Риасийский период.
11.450.000.000 — первый ледниковый период — гуронский (преимущественно, в Северной Америке).
11.530.000.000 – падение астероида в Западной Австралии.
11.580.000.000 – увеличение глубоководности морей.
11.630.000.000 – глобальное потепление и окончание гуронского ледниковья.
______11.680.000.000-11.930.000.000 — Орозирийский период.
11.707.000.000 – падение астероида в ЮАР.
11.730.000.000 – 12.030.000.000 – возникновение складчатых систем, вновь спаявших обломки архейской континентальной коры, чему способствовала новая эпоха мощного гранитообразования.
11.740.000.000 – 11.960.000.000 – формирование Карельских гор.
11.830.000.000 – появление первых эукариот – живых одноклеточных существ, имеющих ядро клетки. Первыми эукариотами были древнейшие жгутиковые. Переход клеток к производству энергии с использованием митохондрий стал эволюционной революцией, так как позволил дальнейшее развитие ядерных клеток и усложнение их внутренней структуры.
11.880.000.000 – падение астероида в Канаде. Образование медно-никелевого рудного бассейна. Существование древнейшей многоклеточной водоросли.
______11.930.000.000-12.130.000.000 — Статерийский период.
11.930.000.000 – падение астероида в Финляндии. Воды мирового океана насыщены кислородом. Мощная природная ядерная реакция в Камеруне.
11.930.000.000-12.230.000.000 – суперконтинент Коламбия.
12.030.000.000 – зрелая континентальная кора существует уже на 70% площади ее современного распространения.
12.070.000.000 – падение астероида в Северной Австралии.
12.080.000.000 – в морях широко распространен микроскопический фитопланктон: преимущественно сине-зеленые водоросли (цианобактерии).
12.100.000.000 – падение астероида в Западной Австралии.
___12.130.000.000-12.730.000.000 — Мезопротерозойская эра.
______12.130.000.000-12.330.000.000 — Калимийский период.
12.230.000.000 – на основе древних жгутиковых возникают новые группы простейших – жгутиковые и саркодовые. Под влиянием хищников фитопланктон увеличивается в размерах (в среднем в 4-5 раз).
12.320.000.000 – начало сближения материковых плит Балтики, Сибири, Лавренции и Антарктиды.
______12.330.000.000-12.490.000.000 — Эктазийский период.
12.330.000.000 – продолжается осадконакопление и расширение осадочных чехлов. Появление первых примитивных водорослей. Фитопланктон под влиянием хищников нового класса увеличивается еще в среднем в 3 раза.
______12.490.000.000-12.730.000.000 — Стенийский период.
12.530.000.000 – половое размножение увеличивает скорость эволюции живых организмов. Появление новой группы простейших – бурых (красных) водорослей, некоторые из которых сильно напоминают современные красные водоросли. Появление одноклеточных зеленых водорослей.
12.630.000.000 – появление первых динофлагелянтов – двусторонне-симметричных или асимметричных жгутиконосцев с развитым внутриклеточным панцирем.
12.630.000.000-12.980.000.000 – суперконтинент Родиния. Ее частями являлись Сибирь, Лавренция и Антарктида, а также часть Европы. Родиния расположена в южном полушарии, в западной части которого доходит до совр. экватора. Родинию окружает единый океан – Мировия. Отдельно от Родинии располагаются Африка и Аравия.
12.670.000.000 – появление первых грибов.
12.680.000.000 – падение астероида в Якутии.
12.696.000.000 – падение астероида в Зимбабве
___12.730.000.000-13.188.000.000 — Неопротерозойская эра.
______12.730.000.000-12.880.000.000 — Тонийский период.
12.730.000.000 – скорость вращения Земли вокруг своей оси – 17 часов. Луна расположена в 346 тысячах километров от Земли – на 38 тысяч километров ближе.
______12.880.000.000-13.130.000.000 — Криогенийский период.
12.880.000.000 – рифтовый разлом между частями Родинии – с одной стороны Амазонии, Ла-Платы, Лаврентии, Балтики и Западной Африки и с другой стороны Австралии, Антарктиды, Индии, Конго и Калахари. Зарождение Палеоазиатского океана в пределах совр. Сибири.
12.890.000.000 – появление первых червеобразных морских многоклеточных животных, произошедших от одноклеточных жгутиковых – т.н. Хайнаньской биоты.
12.900.000.000 – между двумя частями Родинии образовался Мозамбикский океан.
12.951.000.000-12.995.000.000 – кайгасский ледниковый период.
12.960.000.000 – группа обыкновенных губок генетически отделилась от линии развития всех остальных многоклеточных животных.
12.977.000.000 – вся Земля замерзла и покрылась льдом. На Родинии местами ледяной панцирь достигает 5 километров толщины, а температура опускается ниже 100 градусов мороза. Вымирание Хайнаньской биоты. Предки групп известковых и шестилучевых губок генетически отделились от линии развития всех прочих многоклеточных животных.
12.980.000.000 – суперконтинент Родиния раскололся на Лавразию, Амазонию, Сибирь, Китай и Южный Китай. Возникновение океанов: Бореального в Арктике, Протояпетуса в Атлантике и Прототетиса близ экватора.
13.011.000.000 – начало стурианского ледникового периода.
13.021.000.000 – общий предок всех многоклеточных животных, кроме губок.
13.030.000.000 – резкое разогревание Земли и таянье ледников. Одноклеточные организмы – фитопланктон – достигают наиболее возможных размеров – 2-3 миллиметров.
13.043.000.000 – общий предок билатерий, брахиоподов, иглокожих, кольчатых червей, моллюсков, мшанок, нематодов, немертинов, хордовых и членистоногих.
13.045.000.000 – появление в морях первых многоклеточных организмов – древних киндариев, обладающих стрекательными клетками.
13.050.000.000 – Палеоазиатский океан разделяет Китай, Южный Китай, Сибирь и Лавразию.
13.055.000.000 – первые хордовые животные.
13.065.000.000 – предки головохордовых бесчерепных животных генетически отделились от предков оболочников и позвоночных.
13.068.000.000 – резкое похолодание и обледенение всей Земли – мариноанский ледниковый период.
13.084.000.000 – в Ростовской области и Северной Австралии упало сразу два астероида.
13.093.000.000 – общий предок членистоногих и первичнополостных червей – нематодов.
13.095.000.000 – таянье ледников. Появление в океанах трубчатых животных.
13.100.000.000 – появление в океанах первых губок — археоциатов.
13.114.000.000 – разделились генетические линии предков оболочников и позвоночных.
13.115.000.000 – разделились генетические линии предков членистоногих и нематодов.
13.121.000.000 – общий предок билатерий, брахиоподов, кольчатых червей и моллюсков.
13.125.000.000 – в ходе дрейфа континентов закрылся Мозамбикский океан.
______13.130.000.000-13.188.000.000 — Эдиакарийский (Вендский) период.
13.130.000.000 – падение астероида в Айдахо.
13.130.000.000-13.190.000.000 – суперконтинент Паннотия. Его частями являются Лаврентия, Балтика, Китай, Сибирь и материки Гондваны. Паннотия окружена океаном Протопасифик.
13.135.000.000 – возникновение инфузорий. Общий предок плеченогих (брахиоподов) и билатерий.
13.140.000.000 – падение астероида в Австралии. Формирование т.н. биоты Доушаньто – морских обитателей микроскопических размеров с развитием двусторонней симметрии (водоросли, многоклеточные таллофиты, акритархи и цианофиты и взрослые губки). Кроме симметрии хорошо заметна наметившаяся «голова», образованная первыми двумя сегментами, и основное «тело» уменьшающееся к «хвосту».
13.140.000.000-13.160.000.000 – рифейское оледенение в Африке, Европе и Австралии.
13.150.000.000 – по мере роста количества кислорода в атмосфере Земли сформировался озоновый слой. Появление у живых существ зубов, пищеварительного тракта и ануса.
13.160.000.000 – после оледенения началась трансгрессия моря. Вторичное возникновение океанов: Палеопасифик, Япетус и Палеотетис. Значительная часть Европы покрыта водой. Китайский континент испытывает поднятие.
13.165.000.000 – средняя температура на Земле достигает 35-40° С.
13.166.000.000 – появление билатерий.
13.170.000.000 – появление морских онихофоров – первых членистоногих. Появление первых моллюсков, развившихся из древних кольчатых червей: группы Bivalvia (Двустворчатые), Hyolitha, Monoplacophora и Rostroconchia.
13.173.000.000 – появление плеченогих (брахиоподов).
13.188.000.000 – начало эона Фанерозоя.

Продолжительность протерозойской эры — 2 миллиарда лет (2,5-0,5 миллиард лет назад). Сейчас протерозой считают уже не эрой, а эоном, состоящим из 3 эр: палеопротерозоя (2,5-1,6 млрд. лет назад), мезопротерозоя (1,6-1,0 млрд. л. н.) и неопротерозоя (1,0-0,5 млрд. л. н.). В 2008 г. из палеопротерозоя выделили эопротерозой (2,43-2,06 млрд. лет назад). Границы следующих эр протерозоя были чуть смещены.
В начале протерозойской эры количество кислорода в атмосфере достигло уже 19% от современного уровня. Для этой самой продолжительной эры характерно образование крупнейших залежей железных руд, образованных за счет деятельности бактерий. Что интересно, древние бактерии сначала содержали в себе железо (как в молекуле гемоглобина). Лишь затем оно стало замещаться другими металлами (например, медью). По-видимому, эта ситуация объясняет и красный цвет Марса. Может быть, вся его поверхность кишит этими «железными» бактериями или их остатками?.
В протерозое было наиболее длительное в истории Земли гуронское оледенение (2,4 — 2,1 млрд лет назад) и несколько эпох глобального оледенения в позднем неопротерозое [в криогене].
В протерозойскую эру произошли основополагающие ароморфозы:
Около 1,8-2 миллиарда лет назад появляются признаки деятельности первых эукариот; господство прокариот сменяется расцветом эукариотических организмов; [другие цифры: «шипастые» ядерные клетки — не позднее 1,4-1,6 Me, несовершенные грибы — ранее 2 Me — значит, первые эукариоты появились в самом начале протерозоя, или даже в архее].
Около 1,5-2 миллиарда лет назад [по другим сведениям — еще в архее] появились первые многоклеточные организмы (Metazoa). Следствием этого был другой важнейший ароморфоз — возникновение тканей и органов. Появлением многоклеточных созданы предпосылки для специализации клеток, увеличения размеров и усложнения организмов; [по некоторым данным — уже не позднее 1,4 Me существовали кишечнополостные (Udocania problematica), а достоверные организмы с хитиновыми трубками — 800 м.л.н.; по методу филогенетики — 1500-700 м.л.н.].
Около 1,5-2 миллиарда лет назад [по другим сведениям — еще в архее] возникло половое размножение (комбинативная изменчивость), при котором слияние генетического материала разных особей поставляло материал для естественного отбора [необходимость полового размножения привела к возникновению ДНК вместо РНК?]
В это же время (приблизительно 1,6 миллиардов лет назад), как считают, произошел раскол между растениями и животными, [т.е., возник фотосинтез — но это не так, фотосинтез произошёл ещё в раннем архее]. Другим важнейшим ароморфозом стало образование двусторонней симметрии у активно передвигающихся организмов. Билатеральность обеспечивала дифференцировку тела на спинную и брюшную стороны, передний и задний концы. Спинная сторона выполняла защитную функцию, брюшная — обеспечивала движение и захват пищи. В переднем конце развивались органы чувств, а затем — нервные узлы и головной мозг. Это значительно повысило жизненную активность животных.
В эту эру образуются все отделы водорослей, слоевище у многих становится пластинчатым. Для животных того времени характерно отсутствие скелетных образований, конец протерозоя (эдиакарский период) образно называют «веком медуз». Появляются кольчатые черви, от них произошли моллюски и членистоногие (последние — от круглых, по новейшим генетическим исследованиям). К концу протерозоя появились все типы животных, кроме вторичноротых — иглокожих и хордовых.
По другим сведениям, уже в протерозое появились первые хордовые — самый высокоорганизованный тип животных. Наличие хорды обеспечило опору мускулатуры; центральная нервная система в виде трубки способствовала их активизации. Также появились органы дыхания — жабры. Ещё одним важнейшим событием протерозоя стал выход водорослей на сушу, которые в симбиозе с грибами дали начало первой сухопутной форме растений — лишайникам.

Время существования Земли разделено на два главных интервала (эона): Фанерозой и Докембрий (Криптозой) по появлению в осадочных породах ископаемых остатков. Криптозой — время скрытой жизни, в нём существовали только мягкотелые организмы, не оставляющие следов в осадочных породах. Фанерозой начался с появлением на границе Эдиакария (Венд) и Кембрия множества видов моллюсков и других организмов, позволяющих палеонтологии расчленять толщи по находкам ископаемой флоры и фауны.

Протерозойская эра. Вторая эра длительностью около 1 млрд. лет характеризовалась отложением большого количества осадков и по крайней мере одним значительным оледенением, в течение которого ледниковые покровы распространились до широт менее 20° от экватора. В протерозойских породах было найдено очень небольшое количество ископаемых, которые, однако, свидетельствуют не только о существовании жизни в эту эру, но и о том, что эволюционное развитие к концу протерозоя продвинулось далеко вперед. В протерозойских отложениях найдены спикулы губок, остатки медуз, грибов, водорослей, плеченогих, членистоногих и т. п.

В процессе эволюции одноклеточные организмы стали объединяться в колонии, получившие (по гипотезе И.И. Мечникова) название «фагоцителлы». Некоторые из этих колоний позже превратились в более сложные организмы типа морских губок. Другие фагоцителлы научились перемещаться с помощью «ресничек» и в дальнейшем превратились в плоских червей. Третьи, сохранив плавающий образ жизни, в процессе своего дальнейшего развития, приобрели рот и дали начало кишечнополостным организмам. Все эти начальные виды простейших живых организмов были найдены в отложениях, соответствующих протезейской эре.
В начальный период, соответствующий протезойской эре, в морях развилось большое количество водорослей, в результате деятельности бактерий и гниения водорослей, начались почвообразующие процессы. В атмосфере продолжалось накопление кислорода.

Географическая оболочка прошла долгий и сложный путь развития. В ее развитии выделяют три качественно различных этапа: добиогенный, биогенный, антропогенный.
Добиогенный этап (4 млрд — 570 млн лет) — самый длительный период. В это время происходил процесс увеличения мощности и усложнения состава земной коры. К концу архея (2,6 млрд лет назад) на обширных пространствах уже сформировалась континентальная кора мощностью около 30 км, а в раннем протерозое произошло обособление протоплатформ и протогеосинклиналей. В этот период гидросфера уже существовала, но объем воды в ней был меньше, чем сейчас. Из океанов (и то лишь к концу раннего протерозоя) оформился один. Вода в нем была соленой и уровень солености скорее всего был примерно таким, как сейчас. Но, по-видимому, в водах древнего океана преобладание натрия над калием было еще большим, чем сейчас, больше было и ионов магния, что связано с составом первичной земной коры, продукты выветривания которой сносились в океан.
Атмосфера Земли на этом этапе развития содержала очень мало кислорода, озоновый экран отсутствовал. Жизнь, скорее всего, существовала с самого начала этого этапа. По косвенным данным, микроорганизмы обитали уже 3,8-3,9 млрд лет назад. Обнаруженные остатки простейших организмов имеют возраст 3,5-3,6 млрд лет. Однако органическая жизнь с момента зарождения и до самого конца протерозоя не играла ведущей, определяющей роли в развитии географической оболочки. Кроме того, многими учеными отрицается присутствие органической жизни на суше на этом этапе.
Эволюция органической жизни в добиогенный этап протекала медленно, но тем не менее 650-570 млн лет назад жизнь в океанах была достаточно богатой.

источник

Огромный этап геологического развития, выделенный под названием «протерозой», соответствует времени 1900-570 млн. лет. Он представлен в пределах всех выступов суши разнообразными горными породами огромной мощности, в числе которых видное место занимают породы биогенные.

Бактериальная и водорослевая жизнь в протерозое достигла исключительного размаха и представлена многообразными геологическими факторами — породо- и рудообразователями. Продуктами этой жизнедеятельности были карбонатные осадки открытых водных бассейнов, железные и марганцевые руды, осадочные сульфидные минералы, отложения кремнезема в виде кремнистых сланцев, силицилитов и т. д.

Осадочное отложение железа происходит на Земле во все геологические времена, от архея до современности. Его сущность давно уже разгадана. Это бактериальный процесс, при котором бактерии используют в качестве энергетической базы растворенные закисные соединения железа. Оказывается, при переводе железа в нерастворимое состояние происходит выделение тепла.

Исследования Н. Г. Холодного показали, что железобактерии необычайно распространены в природе. Они проявляют жизнедеятельность обычно в условиях относительно низких температур (0°-16°С), при наличии СO2 и карбонатных или иных закисных соединений железа в слабокислых или нейтральных средах (рН от 5,8 до 7,6) в присутствии любой концентрации кислорода. В бедных кислородом средах железобактерии развиваются около колоний водорослей. В органических веществах эти бактерии или не нуждаются совершенно, или относятся к ним безразлично, так же как и к наличию света. Железобактерии превращают бикарбонаты железа в гидрат его окиси, причем углекислота является строительным материалом для вещества их клеток.

Биологическое формирование осадочных месторождений железа в огромных масштабах происходило в особенности в протерозое, т. е. в позднем докембрии. Крупнейшие железные месторождения мира принадлежат к группе отложений этого возраста.

Н. Г. Холодный считал, что железобактерии имеют прямое отношение к поведению железа в биосфере, где они выполняют значительную биохимическую работу по окислению закисей железа и превращению их в нерастворимую гидроокись — в железные руды различных типов, по условиям их образования и последующим химическим изменениям, под влиянием различных геологических обстановок (лимониты, гематиты, гётиты, а также силикаты, фосфаты и сульфиды железа). Эти руды очень часто содержат остаточное органическое, по-видимому, бактериальное вещество. Докембрийские руды Кирунавары (Швеция), как правило, содержат до 5% этого органического вещества. Богатейшие месторождения Северной Америки в районе Верхнего озера тоже отложились в раннем протерозое.

К отложениям нижнего протерозоя относятся и криворожские железные руды, а также железные руды Курской и Воронежской областей, Прибалтики. Руды кремнистые. В рудах Кривого Рога и в аналогичных кремнистых рудах Кольского полуострова автор наблюдал настоящие бактериальные структуры, лучше различимые именно в рудах, бедных железом, на фоне светлого кремнезема.

Начало отложений курской железорудной серии датируется 2060 млн. лет, а конец ее формирования — 1500 млн. лет.

И почвы на суше, и водные бассейны протерозоя были широкой ареной деятельности целого ряда групп микроорганизмов, из которых уже тогда эволюционно обособились группы автотрофов, приспособившиеся к освоению реакций распада и преобразования ряда минеральных веществ, связанного с выделением свободной энергии. В породах архея мы не находим зерен пирита, но уже в протерозое пирит отлагался в осадочных породах (пиритизация пород). Значит, в это время появились в массовом количестве окислители серы, а затем и сульфатредуцирующие (разрушающие сернокислые соли) бактерии. Вероятно, существовали и денитрифицирующие бактерии, выделявшие элементарный азот в состав древней атмосферы за счет первичного аммиака и соединений азота, возникших на его основе.

Читайте также:  Что полезнее молоко или сыворотка

Таким образом, органическая жизнь в виде железобактерий была представлена уже более 2000 млн. лет назад. Для существования этих бактерий был нужен, хотя бы в очень малых количествах, элементарный кислород. Часто они его получали от водорослей, вместе с которыми иногда создавали концентрации гидроокислов железа и карбоната кальция. Иногда деятельность бактерий чередовалась с деятельностью водорослей: лето было временем оптимального развития железобактерий. Часто в докембрии так образовывались строматолиты.

Мир водных растений, настоящих фотосинтезирующих, уже в позднем архее был представлен одноклеточными формами. В следующую эру — в протерозое — во всех водных бассейнах Земли развились разнообразные виды многоклеточных, начавших играть важную роль в породообразовании. Лучистая энергия Солнца, особенно красная часть спектра, и значительные запасы углекислоты в биосфере, пополнявшиеся при вулканических явлениях, способствовали развитию водной растительности не только плавающей, но и донной. Воды морей, еще слабо соленые, но богатые бикарбонатами кальция и магния, легко осаждали их химически. Подщелачивая воду, водоросли играли важную роль в осаждении таких карбонатов, образуя строматолиты.

Развитие многоклеточных водорослей произошло более или менее одновременно с появлением в осадках протерозойской эры слоев плотных известняков. Интересная зависимость существует между вспышками вулканизма и количеством растительного водорослевого вещества. Создается впечатление, что временами развитие водных растений на Земле ограничивалось содержанием углекислоты в биосфере, что подтверждается и сокращением отложения карбонатных отложений вообще.

Протерозой — это эра водорослей и бактерий. Лишь к концу ее возникли самые ранние представители многоклеточных животных — черви, губки и археоциаты. Это была также эра одноклеточных простейших животных, пока слабо вскрываемых при исследовательских работах. Но главнейшими видимыми проявлениями жизни в протерозое были водоросли типа пресноводных. Последние, вероятно, участвовали наряду с бактериями и в развитии на суше процессов почвообразования. Перемыв и смыв рыхлых масс почвенного мелкозема уже играл существенную роль в осадочном породообразовании во внутренних и внешних морях того времени. Жизнь по преимуществу захватывала в то время области морских мелководий. Многоклеточные растения еще не выходили на сушу.

В протерозойскую эру на выступах суши, не имеющих растительного покрова, интенсивно шло выветривание горных пород при участии физико-химических и микробиологических процессов; в морских и пресноводных мелководьях развивались водорослевые банки, часто причудливого облика. Водные растения создавали очень своеобразные накопления известняка и даже древнейшие рифы и банки. «В поле» исследователь далеко не всегда отличит небольшие водорослевые скопления карбонатной породы от вмещающих отложений. Но повторяемость рисунка поверхности породы иногда подсказывает, что найдены остатки ископаемых древнейших водорослей. Порода местами оказывается кривослоистой, и это уже частый признак ее водорослевого происхождения; иногда видны известковые тела, которые при разрушении, при выветривании как бы расслаиваются на отдельные пластинки. Это водорослевые известковые образования — строматолиты, иногда достигающие значительных размеров. Они бывают построены или неправильно, или в виде относительно правильных куполов, состоящих из последовательно наросших друг на друга куполовидных годичных наслоений. В некоторых слоях поперечные сечения водорослевых образований кажутся округлыми, концентрически слоистыми, тогда как в действительности это вытянутые вверх тела, чаще конической формы, до метра в высоту и до полуметра в поперечнике у основания. Иногда это крупные тела с округлой поверхностью, тоже сложенные как будто из отдельных корок. В изломе видно, что первоначально маленькое известковое тело постепенно, слой за слоем, обрастало все больше сверху и с боков, сохраняя почти шаровидную форму. Кое-где на скалах как будто нарисованы колонки, состоящие тоже из наслоений, тянущиеся в одном направлении и время от времени ветвящиеся. Лишь при более внимательном рассмотрении видно, что местами они срастаются друг с другом, отклоняются в ту или другую сторону. В одном случае колонии водоросли построили слой породы толщиной в 36 м при скорости роста 1 мм за год. Это значит, что данный вид водоросли, с ее микроскопическими колониями, просуществовал 36 000 лет.


Типы проявления жизни в докембрии: остатки червей, синезеленые водоросли в виде лучистых колоний (ув. в 325 раз), спикулы губок и спор (ув. в 725 раз), отпечаток медузы (уменьш. в 2 раза) и строматолиты, образованные известковыми водорослями (по Р. Моору)

Специальное лабораторное изучение показывает, как виды микроскопических водорослевых колоний с течением времени непрерывно сменяли друг друга. Отдельные слои породы могут иметь различное строение и слагаться из водорослевых сооружений разной формы и размеров. Часто геологическая жизнь большей части этих ископаемых видов оказывается относительно короткой: смена одних породообразователей другими иногда происходила через 20-30 см, или даже менее. При годичном приросте, составлявшем около 0,1-0,5 мм, длительность жизни видов этих водорослей измеряется всего сотнями лет.


Колонковые строматолиты из отложений докембрия (Северный Китай). Фото автора

Для изучения строматолитов из них выпиливаются тонкие прозрачные шлифы, определенным образом ориентированные по отношению к направлению нарастания строматолитов. Если сохранность первичных структур водорослевых колоний достаточная, в шлифе можно видеть особенности строения остатков водорослей. При зарисовках с увеличениями в 10-400 раз видны округлые клеточные колонии из окаменевших сгустков слизистой массы в виде тяжей разцой формы, или же удлиненные многорядные нити, тоже с остаточными структурами слизистых масс колоний синезеленых водорослей. Специальными исследованиями шлифов, зарисовок с них и микрофотографий раскрыто огромное разнообразие водорослевых структур из отложений докембрия. Это позволило описать массу видов, принадлежащих к нескольким десяткам родов синезеленых и красных водорослей.


Сосуществование множества видов водорослей привело к построению многообразных строматолитов в одном слое породы. Поздний синий (Китай). Фото автора

Таким образом, непонятные прежде известковые стяжения — строматолиты, ныне во все большем количестве обнаруживаемые в слоях древних морских и пресноводных отложений и часто составляющие мощные слои породы, оказываются продуктами жизнедеятельности древнейших фотосинтезирующих организмов.

У некоторых водорослей при быстрой фоссилизации газовые пузырьки, оставшиеся в слизи, входили в структуру своеобразных лентовидных строматолитов, обладающих временной способностью подниматься над субстратом. В результате образовывались своеобразные заросли из жестких известковых лент, которые, по мере рассасывания пузырьков кислорода и заполнения их объемов вторичным кальцитом, опускались на дно и накапливались иногда слоем в несколько метров мощностью. Часто водорослевые банки протерозойского времени приобретали общее куполовидное очертание, по-видимому, выгодное в условиях обитания в зоне морского волнения (до глубины в 20 м). Интересно отметить, что лишь в конце кембрийского периода, т. е. много позднее, эта способность некоторых водорослей, обитавших в условиях рифа или мелководной банки, получила очень изящное выражение. Колонии водорослей сезон за сезоном образовывали сотни и тысячи колонок, куполовидные завершения которых вверху составляли в свою очередь более крупные купола, что, несомненно, возникало в процессе естественного отбора под влиянием волн. Рифы менее правильной формы под ударами волн часто разрушались. Между тем куполовидная поверхность групп водорослевых колонок оказывалась защищенной от такого разрушения. Интересно, что в построении колонок иногда участвовали последовательно многие виды водорослей, принадлежащие даже к разным родам. Ниже волновой зоны моря часто многие виды водорослей существовали совместно, по соседству, и образовывали известковые тела, строматолиты разной формы.


Остатки одноклеточных водорослей из строматолитового известняка верхнего докембрия на о-ве Кильдин. (Ув. в 40 тыс. раз). Фото В. В. Любцова

Интересный тип остроконических строматолитов образовывали разные виды водорослей, одинаково подвижные колонии которых скользили по субстрату, прежде чем частично от него оторваться. В таких случаях водорослевые банки имели вид остроконечного частокола, с предельными поперечниками до 10-15 см.

Удалось также выяснить, почему часто строматолиты имеют выпуклые вверх, иногда даже куполовидные наслоения. Оказывается, в слизистой массе древнейших синезеленых водорослей выделяемый ими кислород часто застревал в виде пузырьков. Эти пузырьки, стремясь подняться вверх, способствовали скольжению колонии по субстрату к более высоким точкам его поверхности. Образовывались вздутия колоний с тенденцией к образованию конических форм, если пузырьки скапливались в осевой зоне в большем количестве, чем по краям дерновинки водоросли. Часто в последующих наслоениях колонии водоросли скользили вверх по этим вздутиям, а иногда даже частично срывались с субстрата и всплывали в верхние слои воды. Так за столетия и тысячелетия формировались конические, иногда даже остроконечные, строматолиты.

Это свойство проявлялось у многих видов водорослей в разное геологическое время. Конические строматолиты образовывались во все времена докембрия, в разные эпохи кембрия и даже ордовика, исчезнув вообще лишь при общем спаде геологической деятельности водорослей, когда появились древнейшие группы морских беспозвоночных животных.

Таким образом, как конические, так и куполовидные формы строматолитов не имеют прямого отношения к систематике породообразующих водорослей.


Микроструктура строматолита из отложений докембрия. Видна быстрая смена породообразующих форм. Фото автора

Следует учесть, что преобладающее количество видов древнейших водорослей не образовывало четких тел постоянной формы типа строматолитов, а наслаивало осадок, превращая его в плотную породу, где лишь частично сохранялась морфология колоний и продукты их жизнедеятельности, то в виде прихотливо изогнутых столбиков, то в виде неправильных стяжений мелких известковых комочков, подобных цветной капусте. Изученность этих древнейших водорослей еще очень низка. Однако за последние годы в слоях морских отложений, образовавшихся от 1200 до 600 млн. лет назад (синийский период), выявлено большое разнообразие родов и видов синезеленых и красных водорослей, одновременно раскрывших перед нами и абсолютные скорости роста водорослевых колоний и отражение на их жизнедеятельности влияния 11-летних циклов солнечной радиации. По тому, как ориентированы в пространстве скопления карбонатного материала, созданные жизнедеятельностью водорослевых колоний за длительные промежутки времени, можно определить общее направление светового потока.


Часть поверхности водорослевой банки со слабовыпуклыми наслоениями. Ранний протерозой (Китай). Фото автора

Самый главный результат исследований состоит в том, что установлена возможность вскрывать остаточные биогенные структуры у карбонатных стяжений водорослевого происхождения. Таким образом был обнаружен целый мир водорослей и водорослевых сообществ, крайне интересный для развития палеоботанической науки, для сопоставления по этим остаткам отложений разных районов, иногда весьма удаленных друг от друга, как, например, Енисейский кряж и Прибайкалье, район Туруханска и бассейн р. Алдана и т. д.

Требуются еще большие усилия, чтобы раскрыть окончательно эволюцию древнейших водорослей, разработать их систематику и определить масштабы их геологической деятельности.


Мелководье раннесинийского моря. Строматолитовая банка, образованная синезелеными водорослями. Реконструкция автора

Можно сказать, что водоросли, и только они, примерно за два миллиарда лет извлекли из биосферы колоссальные количества углекислоты, образовав на ее основе столь же колоссальные количества органических веществ. При отмирании колоний эти вещества послужили жизненной средой для развития других организмов (бактерий и простейших) и в итоге — исходным материалом для образования биохимическим путем углеводородных соединений — нефти и горючего газа. Водоросли способствовали отложению на дне древнейших морей огромных количеств углекислого кальция и отчасти магния. Можно считать, что в пределах современных континентов водоросли отложили за время протерозоя карбонатные породы общей мощностью более 1000 м. Эта их геологическая деятельность сопровождалась часто отложением известковых илов при участии «кальциевых» (денитрифицирующих) бактерий. Синезеленым водорослям часто сопутствовали также железобактерии, иногда господствовавшие в межвегетационные сезоны и образовывавшие в строма толитах железистые пленки.

Систематически очищая биосферу от углекислого газа и бикарбонатов (растворимых карбонатов кальция и магния), водоросли выделили за счет кислорода воды огромные количества свободного кислорода. Этим они существенно изменили свойства среды жизни на Земле, сделав ее пригодной для появления и развития аэробов в широком смысле, т. е. для новых групп микроорганизмов и для животных. Восстановление аммиака и углеводородных соединений деятельностью многих групп бактерий при одновременном накоплении в биосфере больших масс органического вещества привело к концу протерозоя (синия) к накоплению на Земле свободного азота.


Поперечное сечение конического строиатолита. Видны годичные наслоения и 11-летние циклы. Средний синий. Фото автора

Конечно, свободный азот мог накапливаться в атмосфере не только в результате жизнедеятельности денитрифицирующих бактерий, но и при разложении органического вещества белкового состава в бескислородной среде биосферы того времени. В круговороте веществ в природе такой путь также мог играть важную роль.

Совместная деятельность всех отмеченных групп организмов, обитавших лишь в водных средах Земли, таким образом, в корне изменила состав атмосферы и гидросферы, значительно приблизив его в конце протерозойской эры (570 млн. лет назад) к современному.


Плитообразные строматолиты верхнего синия с однородной ориентировкой в пространстве, соответствующей древнему меридиану. Фото автора

Остатки животных в отложениях протерозоя очень редки, но нет сомнения в том, что основы животного мира были заложены одновременно с возникновением мира бактерий и фотосинтезирующих растений. Животные представлены в протерозое мелкими формами, не получившими массового развития и не принимавшими участия в породообразовании. Они пока теряются среди обильно проявившейся водорослевой и бактериальной жизни. Однако все же находки остатков организмов в метаморфических толщах докембрия известны уже в ряде стран мира, в особенности они участились в пределах некоторых горных районов Дальнего Востока, Сибири и на севере европейской части СССР. К таким районам можно причислить и Украину, в частности докембрий Украинского кристаллического массива. В 1958 г. В. В. Бесе в породах криворожской серии наблюдал некоторые «проблематические» остатки организмов, оставшиеся ближе не изученными.


Отпечатки червей (?) на выветрелой поверхности известняка. Нижний синий. Фото автора

В 1965 г. при микроскопическом изучении конгломератов верхней свиты криворожской серии из района рудника им. М. В. Фрунзе были обнаружены уже хорошо сохранившиеся остатки организмов. В геологическом строении района этого рудника участвуют породы метабазитовой и криворожской серий глубокого докембрия, образующие синклинальную структуру субмеридионального простирания. Верхняя из этих серий сложена различными сланцами, мраморами, песчаниками и конгломератами. Характерной особенностью некоторых сланцев, реже песчаников и мраморизованных известняков, является местами содержание углеродистого материала с переходами даже в углистые сланцы. Конгломераты состоят из окатанных обломков кварцитов, песчаников, гранитов и очень редко из известняков, по-видимому, принадлежащих к более древней серии отложений докембрия. В штуфе керна с глубины в 1344-1345 м, представленном именно конгломератом, была обнаружена галька такого состава с одиночной галькой карбонатной породы с явными остатками организмов. Цемент песчанистый перекристаллизованный, показывающий зеленосланцевую фацию метаморфизма на переходе к амфиболитовой. Абсолютный возраст конгломерата, точнее время его метаморфизма, по данным Ф. И. Котловской (1961), А. П. Виноградова, Л. В. Комлева и А. И. Тугаринова (1965), указывается около 2000 млн. лет.


Кораллиты Aseptalia ukrainika Vologdin, обнаруженные в нижнем протерозое криворожской серии. Украина, Кривой Рог (около 2000 млн. лет, по А. Г. Вологдину)


Кораллиты Aseptalia ukrainika Vologdin, обнаруженные в нижнем протерозое криворожской серии. Украина, Кривой Рог (около 2000 млн. лет, по А. Г. Вологдину)

С помощью прозрачного шлифа в гальке мраморизованного известняка установлены несомненные остатки синезеленых водорослей, в сопровождении нескольких экземпляров остатков кораллообразных представителей беспозвоночных животных, что, конечно, не только для докембрия Украины, но и вообще является большой сенсацией. Остатки водорослей представлены в виде местных скоплений одноклеточных форм, а также водорослевым трихомом, свернутым в спираль, со следами его окружавшей студенисто-слизистой массы (?). Подобный тип сохранности ранее многократно наблюдался. Остатки кораллообразных организмов вскрыты в косых и продольных сечениях, причем их внутренняя полость заполнена или остатками одноклеточных водорослей, или густой массой метаморфизованного органического вещества (битумами?). Кораллиты Aseptalia были узкоконической или роговидной формы с двуслойной стенкой и без каких-либо перегородок.


Спикулы губок. Дальний Восток, бассейн р. Учур. Отложения гонамской свиты (1500 млн. лет, по А. Г. Во л or дину и Н. А. Дроздовой)

Не менее древние остатки фауны червей, трубкожилов — Udocania problematica обнаружены А. М. Лейтесом в отложениях битунской свиты удоканской серии Забайкалья, возраст которых определен в 2000-1600 млн. лет. На этом же стратиграфическом уровне в туломозерской свите сегозерской серии ятулия Карелии В. А. Перевозчиковой обнаружены створки раковины.

В отложениях гонамской свиты в бассейне р. Учур (Дальний Восток) автором установлены остатки спикуд губок и двух типов проблематик. Фрагменты спикул губок представлены одноосными спикулами — рабды и спикулами крючковидной формы. В этой же свите в Аяно-Майском районе установлены колониальные водоросли Gonamophyton, широко распространенные в мурандавской свите хребта Малый Хинган Приамурья и щекурьинской свиты восточного склона Приполярного Урала, где были распространены также колониальные водоросли Murandavia.

Обильный материал по древнейшей органике получен из слоев нижнего и среднего протерозоя Южной и Центральной Карелии. Он представлен здесь как исключительно мелкими, так и относительно крупными формами, в числе которых главнейшая роль принадлежит синезеленым водорослям, обитавшим в составе планктона и бентоса. Они представлены как одноклеточными, так и, чаще, колониальными формами, частью в виде сложных биоценозов. Представители бентоса часто развивались последовательно друг на друге в общем процессе, приводившем к образованию соответствующего осадка, охватываемого литогенезом. Отчетливо выражены микрослои, вероятно, обусловленные сезонными изменениями условий жизни фотосинтезирующих организмов. Субстрат иногда был подвижным (песчаники?), причем формировались так называемые онколиты. В составе вещества их наслоений удается различать остатки отдельных видов синезеленых водорослей. Возможен подсчет числа сезонов вегетации при формировании таких образований. Иногда формировались онколиты удлиненной формы, направленного развития. Наблюдались случаи их прижизненного срастания, что могло произойти при делении клеточных колоний. Их вещество первично имело студенисто-слизистую консистенцию, как это и свойственно синезеленым водорослям.


Остатки организмов: губкообразные организмы в разных сечениях в шлифах (ув. в 4 раза) Ladogaella variabilis Vologdin (а). Часть сечения онколита, образованного нитями водоросли (ув. в 20 раз) Ptilophyton makarovae Vоlоgdin (б). Карелия, район г. Сортавала, свита контиосари (1770-1850 млн. лет, но А. Г. Вологдину)

В слоях из свиты контиосари Карелии (нижний протерозой) обнаружено сосуществование водорослей Ptilophyton с губко-подобными организмами рода Ladogaella. У этих организмов были отчетливо выражены внутренняя полость и общая радиальная симметрия. В своем индивидуальном развитии они проходили начальную планктонную стадию и взрослую — прикрепленную с образованием каблучка прирастания к субстрату.

Иногда губкообразные организмы прикреплялись к колониям водорослей, ограничивая их жизнедеятельность. Случалось, что стадия свободного плавания задерживалась, причем соседние организмы иногда срастались. У сидячих особей верхняя часть оформлялась в виде воронкообразного углубления, чем они как бы предрешали внешнюю форму поздних кораллов и других кораллообразных организмов. В поле прозрачного шлифа под микроскопом удается наблюдать сложные картины таких древнейших жизнепроявлений. Морской бассейн охватывал тогда, по-видимому, всю Фенноскандию, поскольку автору удалось в той же свите сделать вторую в мире находку Corycium enigmaticumSederholm. При изучении данной формы оказалось, что ей свойственна трубчато-коническая форма тела с радиальной симметрией. Оболочка (стенка) утолщенная, подчеркнутая остаточным органическим веществом. При этом были обнаружены внутренние перегородки на разных стадиях индивидуального развития, обычно пористые, плоские. Этот новый признак,

возможно, указывает ча принадлежность формы к более высокоорганизованной группе животных. Не исключено, что развитие шло в сторону цефалопод (?). У совместно находимых губкообразных (ладогелл) на взрослой стадии проявлялась способность к почкообразованию, очевидно, прогрессивная по отношению к простому делению. Как корициумы, так и ладогеллы, по-видимому, имели студенисто-слизистую консистенцию тел, что способствовало длительному свободному развитию особей. Последующая фоссилизация, вероятно, была проявлением старения особей, что приводило к их отмиранию и погружению в илистый осадок бассейна.

Обнаружено много остатков организмов с радиально-осевой симметрией тела и внутренней полостью или с системой полостей и каналов. Поражает, что они совсем не деформированы в породе; это можно объяснить своеобразием проявлений фоссилизации. Вероятно, эти организмы были близкими к гидроидным полипам, к гидромедузам.

Очень интересна сплошная черная окраска пород (кристаллических сланцев) свиты контиосари. Она оказалась обусловленной скоплением черной (вторичной) слюды — биотита и сильно измененных битумов, частью вполне поддающихся экстракции сильными растворителями. Поиски особо мелких остатков с помощью шлифов и порошковых проб привели к открытию множества своеобразных мелких скелетных образований, частью целых, частью ломаных, среди которых присутствуют фоссилизированные остатки водорослей типа золотистых (?), перидинеевых (?), диатомовых по построению очень еще примитивных, чаще сложенных кремнеземом, что может быть следствием как первичных явлений, так и вторичных. Данное местонахождение в возрастном отношении близко к установленному в слоях свиты ганфлинт на берегах оз. Онтарио, но в отношении богатства органическими остатками оно значительно интереснее.

Читайте также:  Сибирская платформа соответствующая ей форма рельефа полезные ископаемые

В Восточной Сибири — в Забайкалье, в Удоканском хребте представлены отложения протерозоя большой мощности. Здесь в слоях бутунской свиты тоже обнаружено много органических остатков, в основном водорослевых. Местами породы свиты, явно имеющей морское происхождение, целиком состоят из подвергшихся фоссилизации органических остатков, местами встречается бесструктурное остаточное органическое вещество. Водоросли по типу принадлежат к красным. Следы слизеобразования у их остатков выражены незначительно. Некоторые формы с нитчатым талломом образуют сплетения, свивающиеся в две пряди, подобно шпагату, что можно различить в сечениях породы соответствующего направления. При хорошей сохранности у однорядных нитей можно отчетливо различить последовательность наращивания клеток или клеточных колоний. Некоторые участки породы сложены однородно ориентированными тесно сомкнутыми фоссилизированными нитями с ясной полярностью развития водорослевой дерновинки. Фоссилизация превосходно закрепила морфологические черты ряда видов таких водорослей. Открыты виды, вполне сопоставимые с изученными автором из свиты цзинлин китайского синия. Удалось также обнаружить остатки своеобразных двухстенных скелетных образований, имеющих пластинчатое строение и пористость, благодаря чему они несколько напоминают археоциаты кембрия. Примерный возраст вмещающих пород — средний протерозой.

В Юго-Западном Прибайкалье слои улунтуйской свиты верхнего протерозоя оказались преимущественно фитогенными, но органические остатки в них сохранились по большей части плохо. Все же по р. Сарме удалось обнаружить разновидность улунтуйского водорослевого известняка, почти целиком состоящего из фоссилизированных остатков водорослей с округлыми и нитевидными клеточными колониями. В результате был описан ряд видов и рядов микроскопических водорослей, очень четких. В их составе присутствуют одноклеточные с округлыми клетками двух размеров, отнесенные к двум видам одного рода, и интересная нитчатая форма. Сходная форма затем была открыта в мурандавской свите протерозоя Приамурья.

Из учурской серии верхнего протерозоя на юго-востоке Сибирской платформы в районе пос. Нелькан Аяно-Майского района был описан ряд интересных родов и видов водорослей группы хроококковых и ревуляриевых. Первые (гонамофитоны) были представлены в породе отдельными клеточными колониями, окруженными прижизненно толстой оболочкой студенисто-слизистой массы. В шлифах это видно отчетливо. В последней видны радиальные каналы, по которым клетки могли выбрасываться наружу, подобно тому, как это имеет место у современного рода воронихиния (Voronichinia Elenkin). Интересно, что очень сходную водоросль удалось обнаружить в докембрийской породе в забое одной нефтяной скважины в Тюменской области, что позволяет коррелировать вмещающие слои. Водоросли группы ревуляриевых — нельканеллы с колониями радиально-лучистого строения развивались от центра колонии или же, как казалось, только в зоне периферии с образованием дерновинки сферического очертания в пространстве. Важно отметить, что микроводоросли с радиально-лучистым расхождением нитей и свободной полостью внутри найдены также в протерозое восточного склона Кузнецкого Алатау. Накопленный опыт позволяет относить такие формы предположительно к зеленым водорослям тиго обнаруженных автором на Тимане.

Докембрийские отложения Батеневского кряжа в Кузнецком Алатау также оказались изобилующими остатками водорослей из мартюхинской свиты. Автором были выявлены и описаны колониальные водоросли из порядка Chroococales Geillеr роды Vesiculophyton и Echaninia. Остатки своеобразной водоросли Pustularia были встречены в верхнепротерозойских отложениях (джурская свита) низовьев р. Амбары восточного склона Енисейского кряжа, среди строматолитового материала. Ее остатки представлены известковыми лентовидными образованиями весьма своеобразного строения, характеризующимися отчетливо выраженными пузырчатыми микроструктурами.

Колония водоросли из микроскопических прямостоячих нитей обладала способностью последовательного линейного разрастания с образованием лентовидных пластин впоследствии обызвествлявшихся. Причем скопления пузырьков воздуха, находящихся в слизи колонии, мешавшие ее сплошному обызвествлению, обусловливали наличие в дальнейшем ее пузырчатой структуры. Обызвествленные колонии водоросли залегают в породе одна над другой через промежуток 0,3 до 2,0 мм.

На западном склоне Тиманского кряжа, по р. Мезенская Пижма, в слоях протерозойской серии, выраженной алевролитовыми породами, выявлен крупный биогерм, образованный при участии зеленых водорослей большого размера. В результате этого открытия автором была описана форма рода тиманелла, имеющая таллом в поперечнике до 10-12 см, при отчетливо выраженной гигантской осевой части и постепенно утолщающихся массовых нитевидных ответвлениях в стороны и вверх. Водоросль имеет черты, сближающие ее с типичными палеозойскими сифоновыми, но по размерам таллома она в десятки раз крупнее. Упомянутый биогерм развивался на грунте илистого состава. Особи водоросли нарастали друг на друга, образуя сплошную массу, отмершее вещество которой пропитывалось илистым материалом. Первичная консистенция этого вещества была несомненно студенисто-слизистой. Материал можно различать только на увлажненных пришлифовках и в прозрачных шлифах благодаря сохранившемуся остаточному органическому веществу.

Выше уже упоминались строматолиты — своеобразные известковые сгустки слоистого строения, встречающиеся в древних толщах от архея до современных отложений. Некоторые исследователи изучают такой материал на основе лишь внешних признаков, учитывая их форму и размеры, не раскрывая его микроскопического строения, неправильно придавая им тройную латинизированную номенклатуру, как будто это нормальный палеонтологический материал. Между тем внутри таких образований, по существу являющихся микробиогермами, нередко присутствуют остатки конкретных форм микроскопических водорослей. Они вполне различимы для опытного глаза и обычно заслуживают специального палеонтологического изучения. Так, в строматолитах протерозоя Приамурья (хребет Малый Хинган, левый берег р. Амура) в слоях мурандавской свиты автору удалось обнаружить в веществе крупных, изменчивой формы строматолитов множество четких видов и родов синезеленых. водорослей, среди которых видное место занимают развивавшиеся округлыми колониями мурандавии. Чтобы различить их и понять, необходимо было только при изучении препаратов перейти от малых увеличений к большим, до нескольких сотен раз. Их остатки отчетливо видны в препаратах, нередко напоминая картину живой колонии водоросли на предметном стекле. Видны также фоссилизированные следы наружной студенисто-слизистой оболочки колоний с особенностями их микростроения. Выделенные из препаратов таксоны различаются то размерами клеточных колоний, то толщиной и внутренними деталями строения их оболочек, размерами клеток и т. д. Благодаря этому значительно обогатился список руководящих форм для мурандавской свиты, позволивший определить и ее возраст как низы верхнего протерозоя, что заставило признать докембрийским и возраст железорудной свиты Малого Хингана. Как оказалось, выделенные мурандавии распространялись отсюда на запад, достигая Карелии, а весьма возможно и дальше. Наряду с округлыми колониями здесь же были открыты нитчатые формы водорослей и колонии с особо крупными клетками. Одна из нитчатых форм особо примечательна. Ее можно рассматривать как развитие двух-трех спирально свернутых однорядных нитей в сгустке студенисто-слизистого вещества. Она имеет сходство с Thisanaplanta filamentosa V.et J., выделенной автором и Т. Н. Титоренко в слоях улунтуйской свиты протерозоя Юго-Западного Прибайкалья.

Водоросль нитчатого строения со спирально свернутой нитью была обнаружена автором во внутриформационном конгломерате в низах криворожской серии на Украине. К сожалению, метаморфизм сильно изменил ее остатки. Нить водоросли тоже, по-видимому, находилась внутри слизевого чехла. Сравнивать эти водоросли преждевременно; обе они относятся, вероятно, к одной группе, к одному семейству (?). Вместе с этой «спирогироподобной» водорослью в гальке того же конгломерата были открыты интереснейшие остатки организмов Aseptalia, тяготеющих к явным целентератам, о которых говорилось выше.


Pustularia taeniata Vologdin. Уменьш. в 10 раз. Реконструкция

Много нового, интересного материала по организмам докембрия дал автору Чешский массив (Западная Чехословакия). В районе к югу от г. Пльзень, близ г. Вотице, в слоях докембрия, серия молданубика, была обнаружена большая группа ископаемых форм, в числе которых оказалось много водорослей с колониями сферической формы. У них варьируют размеры, очертание в пространстве и проявления следов клеточной структуры. Они существенно отличаются от подобных сибирских микроводорослей докембрия. Наряду с этим обнаружены фоссилизированные дерновинки, которые тоже состоят из округлых, но разновеликих клеточных колоний, имеющих форму неправильных тяжей — нитей. Обычно им сопутствуют там крупные местные скопления обуглероженного битума, иногда размером с голову ребенка. Эта группа водорослей, кажущаяся эндемичной, дала возможность автору выделить и описать в специальной монографии ряд довольно четких видов и родов, которые характерны именно для слоев пестрой свиты молданубика Южной Чехии. Интересно, что в ассоциации с этими водорослями были обнаружены остатки беспозвоночных животных, которые очень напоминают скелеты археоциат, но отличаются от типичных кембрийских представителей этой группы исключительно малыми размерами. Возможно, что это предковые формы, требующие дальнейшего исследования.


Timanella gigas Vologdin. Внешний вид водоросли. Уменьш. в 2 раза. Реконструкция

В составе докембрия Чешского массива, в его спилитовой серии, автором также были открыты четкие нитчатые водоросли в ассоциации с одноклеточными планктонными формами. Если они удачно вскрыты при распиловке образца, именно продольно, то в препаратах местами кажутся образующими целые заросли, в частности водоросль Bystraia boucekl. Там же, в районе бассейна р. Бероунки, в лидитах альгонкия выявлена нитчатая водоросль Berounkia, несколько сходная с соответствующей находкой в докембрии района оз. Онтарио.

В чешском материале обнаружены следы сгустков бесструктурного органического вещества, иногда хорошо зафиксированных процессами окаменения, притом наблюдаемых среди массового развития одноклеточных водорослей. По-видимому, это тоже остатки водоросли, способной образовывать округлые клеточные колонии с обильным слизеотделением (?). Там же были обнаружены остатки конических или трубчатой формы тел с довольно толстой стенкой. К водорослевым остаткам их причислить трудно.


Timanella gigas Vologdin: а — внутреннее строение слоевища; б — боковые ответвления. Нат. вел. Реконструкция

В докембрии Чешского массива при неясном стратиграфическом положении были найдены остатки почти настоящих археоциат с двухстенными скелетами, у которых стенки соединены между собой пористыми радиальными перегородками. Таким образом, накапливается достаточно данных, чтобы считать археоциаты характерными и для протерозоя. В слоях пестрой свиты района г. Вотице автором выявлено несколько групп беспозвоночных животных, имевших пористо-пластинчатый известковый скелет. Некоторые организмы отличались двухкамерным скелетом. У других он был многокамерным, по своему строению напоминающим дольки апельсина. Возможно, это тоже археоциатоподобные или приближающиеся к простейшим, к фораминиферам, организмы. Вопрос этот пока остается открытым. В слоях чешского моравика в районе г. Грудима были выявлены остатки многокамерных организмов со следами пузырчатой ткани во внутренней полости. Еще важнее, что там же были обнаружены сечения маленьких раковинок, лишенных замка, скорее всего принадлежавших лингулоподобным брахиоподам. Раковины лежали на грунте вогнутой стороной вверх и на них видны фоссилизированные скопления одноклеточных планктонных водорослей.

Большую группу горных пород составляют породы, образованные за счет остатков органического вещества и самих растительных организмов, такие, как горючие сланцы (кукерситы Эстонии), каменные и бурые угли, вся группа ископаемых битумов (нефть и горючий газ, асфальт и озокерит). Породы, сложенные растительными остатками — водорослями, имеются и в протерозое.

В составе пород докембрия Карелии издавна известны шунгиты, своеобразные горные породы осадочного происхождения, встречающиеся в ряде районов Заонежья, в частности в районах Кондопоги, Великой Губы, пос. Шунги. Шунгиты образуют особую свиту в верхах ятулия (среднего протерозоя). Имеются шунгитовые сланцы — пластообразные шунгиты, залегающие жилообразно вблизи от покровных диабазов. Внешне шунгиты напоминают каменные угли и антрацит. В особых условиях им свойственна способность к сгоранию, чаще при большой зольности, объясняемой высоким содержанием углерода. Эти шунгиты содержат до 98% углерода. Их плотные кремнистые разновидности используются как поделочный материал или как пробирный камень. В порошке шунгиты пригодны для получения черной краски. Почвы на шунгитах отличаются повышенной урожайностью сельскохозяйственных культур вследствие наличия в них большого комплекса фитофильных микроэлементов: молибдена, меди, ванадия, мышьяка, калия, магния и т. д.

Некоторые разновидности шунгитов при температуре до 1090-1105° С вспучиваются, превращаясь в легкую пористую массу, пригодную для использования ее в качестве теплоизоляционного материала — шунгизита. Вспученная масса шунгита — пенокералит — хорошо пилится, имеет прочность на сжатие до 40 кг /см 2 , что делает его тоже ценным строительным материалом.

Происхождение шунгитов многие десятилетия представлялось загадкой. Более близко к объяснению природы шунгитов подошел Б. А. Борисов, считавший, что они созданы за счет метаморфизма пород сапропелевого типа, образованных в стоячих морских мелководных бассейнах — бухтах и лиманах, где интенсивно развивалась жизнь того времени. В 1968 г. в шунгитовых породах из Приладожья В. И. Горлов действительно обнаружил остатки организмов, представленных микроскопическими формами. При исследовании этой находки, а также изучении других материалов из шунгитовой свиты Прионежья было установлено в шлифах массовое скопление остатков микроскопических водорослей типа синезеленых. По-видимому, их периодическое развитие в прошлом обусловливало «цветение» воды в периоды годичных сезонов вегетации. Это оказались планктонные водоросли, по своим биологическим свойствам действительно сходные с водорослями, образующими сапропелевые осадки в современных стоячих пресноводных и солоноватоводных водоемах.

Описанная значительная группа родов и видов микроскопических водорослей, по их остаткам из карельских шунгитовых пород характеризует особенности жизнепроявлений в водных бассейнах глубокого геологического прошлого в пределах Северо-запада СССР и, вероятно, Финляндии. Кроме того, можно считать, что одновременно разгадывается происхождение шунгитоподобных образований из ряда других районов СССР, в частности Восточной Сибири, Дальнего Востока и Украины.

Интересно, что процессом окаменения осадков в древнейших бассейнах указанного выше типа закреплены, зафиксированы вполне ясно стадии индивидуального развития отдельных клеток водорослей, этапы их размножения посредством простого деления, что указывает на их особую примитивность, как это и можно было ожидать у таких древних форм жизни. Кроме того, в средних и более поздних слоях протерозоя, в основном в синий, известны замечательные находки остатков радиолярий, фораминифер и кремневых губок в углистых сланцах докембрия Бретани. Чарльз Д. Уолкотт открыл в докембрии Большого Каньона Северной Америки остатки многощетинковых червей и ряд других организмов. На юге Австралии обнаружены в докембрии остатки радиолярий. В слоях докембрия Швеции открыт отпечаток членистоногого животного — «ксенусиона», которого можно признать представителем ветви животных, из которой в кембрии развился класс трилобитов. Своеобразные остатки животных неясного систематического положения, отнесенного к проблематическому роду «чарний», были открыты в докембрии Англии и Австралии.

Чрезвычайно разнообразна в систематическом составе фауна Эдиакарского месторождения на юге Австралии близ г. Аделаиды. Здесь в кварцитовых песчаниках Паунд возраста около 600 млн. лет установлены остатки бесскелетной фауны, представленной медузоидными формами, остатками червей, организмов неизвестного систематического положения. Подобные же организмы обнаружены в одновозрастных отложениях свиты Кибис системы Нама в Южной Африке. Здесь встречены Rongea Gurich, Pteridinium Gurich, Para medusium. В серии Нама в Африке обнаружены криброциатоподобные организмы из рода Cloudina. В Евразии и в Америке установлено несколько отпечатков медуз и червей, напоминающих по форме и размерам пиявок.


Вид организма Suvorovella aldanica Vologdin et A. Maslov на выветрелой поверхности породы в нижней части юдомской свиты (ув. в 2 раза). Якутия, район пос. Усть-Юдома, р. Мая (по А. Г. Вологдину)

В докембрии СССР и Китая мы находим иглы кремневых губок, самые примитивные по устройству, отпечатки червей типа сабеллитов, получивших позднее в кембрии более значительное развитие, остатки фораминифер, древнейших археоциат, хиолитов и организмов неясного систематического положения.

В прослоях доломитизированного известняка нижней части разреза юдомской свиты по левому берегу р. Май Н. П. Суворова обнаружила своеобразные органические остатки Suvorovella и Majella, неизвестного систематического происхождения, организмы с двустепенным известковым пластинчатым непористым скелетом, с интервалом без скелетных элементов и стенкой из ромбических выступов, расположенных рядами по спирали.

В верхнем докембрии Русской платформы обнаружены остатки медузоидных организмов Beltanelloides морщинистых сфероидальных форм, напоминающих Charniodiscus, на п-ове Рыбачьем встречены медузоидные формы, напоминающие Medusina и Ediacaria, в керне скважины у г. Яренска из ляминаритовых глин установлена Vendia, в ляминоритовых глинах наблюдаются пиритизированные следы червеобразных организмов Vendovernites. В валдайских отложениях Прибалтики встречены формы, подобные Beltanella, и отпечатки оболочек типа Sabellidites.


Отпечатки протомедуз Sajanella arshanica Vоlogdin на поверхности глинистого песчаника в низах карагасской свиты (нат. вел.). Восточный Саян, Иркутская обл., район пос. Аршан

Небезынтересно отметить находки в слоях карагасской свиты Восточного Саяна отпечатки медуз Sajanella. Они были отнесены к отряду брукселлид, выделенному по материалам нижнего палеозоя. Почти в тех же слоях обнаружены остатки червей сабеллидитов, а также крупных ракообразных, несколько напоминающих палеозойских эвриптерид. Они были описаны автором как карагассии и отнесены к хелицеровым из-за их клиновидных тельсонов и других особенностей панциря. Карагассии достигали в длину полметра и более. Пока что это самые крупные организмы из беспозвоночных позднего докембрия. Впрочем, некоторые исследователи склонны считать их «скрюченными корками высыхания глинистых прослойков на поверхности песка». Карагассии являются, по-видимому, вымершей группой членистоногих, живших в некоторых пресноводных бассейнах конца докембрийского времени.

Таким образом, в мощнейших толщах осадочно-метаморфического докембрия северной Евразии выявлен принципиально новый обильный палеонтологический материал, охватывающий огромный стратиграфический диапазон — от верхов архея до начала кембрия. Он характеризует многие горизонты пород и этапы геологического времени и начинает укладываться в основу новой единой, по крайней мере для Евразии, схемы стратиграфического расчленения докембрия.

Границу между докембрием и кембрием пытались установить многие исследователи. В настоящее время этот вопрос в корне проясняется, поскольку оказывается, что переход от протерозоя к палеозою (570 млн. лет) был отчетливо выражен соответствующей сменой представителей растительной и животной жизни в общем ходе ее эволюции. Преобладание синезеленых водорослей сменилось преобладанием водорослей красных. Сам протерозой и даже поздний архей оказались не только потенциальными, но и фактическими вместителями остатков организмов за огромный этап геологического времени, а именно более чем на два миллиарда лет древнее той границы, ниже которой палеонтологи в сущности не заглядывали. Можно отчетливо отделить начало кембрия от верхов докембрия по остаткам специфических форм водорослей, археоциат, трилобитов и других групп организмов, поскольку история формирования пород земной коры отчетливо записывалась в них, одновременно с общим ходом истории жизни. Поэтому вырисовывается, притом во многом по-новому, общий ход развития организмов Земли в палеофациях ее биосферы, почти с момента возникновения жизни — около 3500 млн. лет до н. э. В результате этого имеется возможность широко внедрить в практику стратиграфических и геологосъемочных работ, связанных с древнейшими осадочными толщами, палеонтологический метод и выделить с его помощью руководящие формы ископаемых организмов как меру геологического времени одновременно с прослеживанием развития самой жизни на ранних этапах.

В общих чертах выясняется древность известных науке организмов, устанавливаются новые, не известные ранее, группы и конкретные предковые формы всех типов бактерий (?), растений и животных, сформировавшихся в процессе общего изменения жизненной среды в биосфере Земли, в процессе биохимической эволюции живого вещества, сопровождавшейся неразрывно эволюцией морфологической. Следует отметить, что органическое вещество в виде продукции организмов и их конкретных остатков во вмещающих породах почти никогда полностью не исчезает. Будучи в той или иной степени измененным — редуцированным, обуглероженным, фоссилизированным, оно часто способно сохранять во вмещающей горной породе исходные морфологические черты, достаточные для палеонтологического изучения. В то же время это вещество представляет немалый интерес и для специальных биохимических исследований, поскольку местами в породах докембрия уже установлено присутствие многих химических компонентов из состава живого вещества. Важно лишь, чтобы палеонтолог и биохимик работали совместно. Геолог при этом получит новый опорный материал для своих стратиграфических, палеогеографических, фациальных и иных построений, а также данные о палеоклимате, ископаемых фациальных обстановках породо- и рудообразования в осадочных условиях, именно от живых свидетелей геологического прошлого. Биогеохимик и биохимик могут получить важный документальный материал и данные о биохимической эволюции жизни на нашей планете.

Таким образом, протерозойская эра истории нашей планеты была в основном временем исключительного господства бактерий и водорослей в водных средах. За этот этап времени, длившийся, по данным абсолютной геохронологии, около 1200 млн. лет, упомянутые группы организмов выполнили огромную геологическую работу по образованию ряда типов осадочных пород и руд, а также по переработке вещественного состава самой биосферы и атмосферы Земли.

источник

Источники:
  • http://vse-lekcii.ru/lekcii-po-istorii/istoriya-dinozavrov/proterozojskaya-era
  • http://www.syl.ru/article/200782/new_proterozoyskaya-era-razvitie-jizni-na-zemle
  • http://fishbiosystem.ru/time/proterozoy.html
  • http://paleontologylib.ru/books/item/f00/s00/z0000013/st014.shtml