Меню Рубрики

Коэффициент полезного действия механизма

Вся та энергия, которая потребляется механизмами, расходуется для того, чтобы преодолевать как полезные, так и вредные сопротивления.

Под полезными в технике подразумеваются те сопротивления, преодоление которых и является основным предназначением машины. Например, для металлообрабатывающих станков таковым является сопротивление резанию металла, в подъемных механизмах и машинах – масса поднимаемого груза и т.п.

Под вредными в технике подразумеваются те сопротивления, которые для своего преодоления требуют расходования энергии не дающей полезного эффекта. Таковыми являются, например, сила трения, возникающая при функционировании механизмов между их составными частями, а также сопротивление той среды, в которой происходит полезное движение.

Принято считать, что чем большую часть потребляемой энергии механизм затрачивает для того, чтобы преодолевать полезные сопротивления, тем более совершенным он является. Если выражать степень совершенства механизма математически, то можно использовать следующее соотношение:

где: ηкоэффициент полезного действия (КПД); An – работа, которая расходуется машиной для того, чтобы преодолеть полезное сопротивление; – работа движущих сил или та энергия, которая затрачивается (потребляется) машиной.

В большинстве случаев коэффициент полезного действия (КПД) выражают в процентах, и для этого для его вычисления используют следующую формулу:

Такой показатель, как коэффициент полезного действия, на практике применяется отнюдь не только для того, чтобы оценивать степень совершенства машин. КПД используют и для того, чтобы определять эффективность любых сложных механических устройств, а также тех приспособлений, которые не относятся к машинам, однако воспринимают, потребляют и отдают энергию. К таковым относятся, к примеру, топки паровых котлов (в них осуществляется преобразование энергии химической в энергию тепловую), электрических двигателей (в них электрическая энергия преобразуется в механическую), электрических осветительных приборов (в них электрическая энергия преобразовывается в световую) и т.п.

Когда возникает задача определения коэффициента полезного действия сложного по своей конструкции устройства, которое состоит из некоторого количества узлов, агрегатов и механизмов, потребляющих энергию, то наиболее целесообразно вычислять не только общий КПД, но и КПД всех отдельных составных частей.

В качестве примера можно рассмотреть установку, которая предназначается для освещения различных помещений и состоит из следующих частей: станция, вырабатывающая электроэнергию; электрические провода; лампы накаливания.

С практической точки зрения интересно выяснить не только то, какой именно коэффициент полезного действия имеет эта конструкция в целом, но и то, каков именно КПД двигателя, передающего вращение электрогенератору; самого электрогенератора; проводников электрической сети; ламп накаливания. Это позволяет, помимо всего прочего, определить наименее эффективные с точки зрения затрат энергии компоненты системы и, по возможности, использовать вместо них те, которые имеют более высокий КПД (например, светодиодные светильники вместо ламп накаливания).

Коэффициент полезного действия машины, механизма или любого другого устройства, отдельные части которого последовательно потребляют передаваемую от одного компонента к другому энергию, равняется произведению КПД этих компонентов. Что касается коэффициента полезного действия механизмов, то он всегда тем ниже, чем выше потери на трение.

источник

Энергия, подводимая к механизму в виде работы движущих сил Адв.с. и моментов за цикл установившегося движения, расходуется на совершение полезной работы Ап.с., а также на совершение работы АFтр, связанной с преодолением сил трения в кинематических парах и сил сопротивления среды.

Рассмотрим установившееся движение. Приращение кинетической энергии равно нулю, т.е.

= 0.

При этом работы сил инерции и сил тяжести равны нулю АРи = 0, АG = 0. Тогда для установившегося движения работа движущих сил равна

Следовательно, за полный цикл установившегося движения работа всех движущих сил равна сумме работ сил производственных сопротивлений и непроизводственных сопротивлений (сил трения).

Механический коэффициент полезного действия η (КПД) – отношение работы сил производственных сопротивлений к работе всех движущих сил за время установившегося движения:

η = . (3.61)

Как видно из формулы (3.61), КПД показывает, какая доля механической энергии, приведенной к машине, полезно расходуется на совершение той работы, для которой машина создана.

Отношение работы сил непроизводственных сопротивлений к работе движущих сил называется коэффициентом потерь:

ψ = . (3.62)

Механический коэффициент потерь показывает, какая доля механической энергии, подведенной к машине, превращается в конечном счете в теплоту и бесполезно теряется в окружающем пространстве.

Отсюда имеем связь между КПД и коэффициентом потерь

Из этой формулы вытекает, что ни в одном механизме работа сил непроизводственных сопротивлений не может равняться нулю, поэтому КПД всегда меньше единице (η

Для второго механизма КПД равняется:

И, наконец, для n-го механизма КПД будет иметь вид:

Общий коэффициент полезного действия равен:

Величина общего КПД может быть получена, если перемножить КПД каждого отдельного механизма, а именно:

η1n= η1 η2 η3 …ηn= .

Следовательно, общий механический коэффициент полезного действия последовательно соединенных механизмов равняется произведению механических коэффициентов полезного действия отдельных механизмов, составляющих одну общую систему:

3.2.2.2 Определение КПД при смешанном соединении

На практике соединение механизмов оказывается более сложным. Чаще последовательное соединение сочетается с параллельным. Такое соединение называется смешанным. Рассмотрим пример сложного соединения (рисунок 3.17).

Поток энергии от механизма 2 распределяется по двум направлениям. В свою очередь от механизма 3 ¢¢ поток энергии распределяется также по двум направлениям. Общая работа сил производственных сопротивлений равна:

Общий КПД всей системы будет равен:

Чтобы определить общий КПД, нужно выделить потоки энергии, в которых механизмы соединены последовательно, и рассчитать КПД каждого потока. На рисунке 3.17 показаны сплошной линией I-I, штриховой линией II-II и штрих- пунктирной линией III-III три потока энергии от общего источника.

I I

1 2 3 ¢ n ¢

Адв.с. А1 А ¢ 2 А ¢ 3 … А ¢ n-1 A ¢ n

II А ¢¢ 2 II

А ¢¢ 3 4 ¢¢ А ¢¢ 4 А ¢¢ n-1 n ¢¢ A ¢¢ n

III 3 ¢¢ …

А ¢¢¢ 3 III

А ¢¢¢ 4 5 ¢¢¢ А ¢¢¢ 5 А ¢¢¢ n-1 n ¢¢¢ A ¢¢¢ n

4 ¢¢¢ …

Рисунок 3.17 — Схема смешанного соединения механизмов

КПД каждого потока будет равен:

Выразим работу движущих сил из этих уравнений:

А ¢ дв.с=A ¢ n / η ¢ 1n

Общая работа движущих сил всей системы будет равна сумме

Подставим это выражение в формулу (3.64), получим уравнение коэффициента полезного действия для смешанного соединения

(3.66)

Для параллельно соединенных механизмов методика определения КПД аналогична предыдущему случаю.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 8940 — | 7147 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Используя тот или иной механизм, мы совершаем работу, всегда превышающую ту, которая необходима для достижения поставленной цели. В соответствии с этим различают полную или затраченную работу Aз и полезную работу Aп. Если, например, наша цель — поднять груз массой m на высоту h , то полезная работа — это та, которая обусловлена лишь преодолением силы тяжести, действующей на груз. При равномерном подъеме груза, когда прикладываемая нами сила равна силе тяжести груза, эта работа может быть найдена следующим образом:

Если же мы применяем для подъема груза блок или какой-либо другой механизм, то, кроме силы тяжести груза, нам приходится преодолевать еще и силу тяжести частей механизма, а также действующую в механизме силу трения. Например, используя подвижный блок, мы вынуждены будем совершать дополнительную работу по подъему самого блока с тросом и по преодолению силы трения в оси блока. Кроме того, выигрывая в силе, мы всегда проигрываем в пути (об этом подробнее будет рассказано ниже), что также влияет на работу. Все это приводит к тому, что затраченная нами работа оказывается больше полезной:

Полезная работа всегда составляет лишь некоторую часть полной работы, которую совершает человек, используя механизм.

Физическая величина, показывающая, какую долю составляет полезная работа от всей затраченной работы, называется коэффициентом полезного действия механизма.

Сокращенное обозначение коэффициента полезного действия — КПД.

Чтобы найти КПД механизма, надо полезную работу разделить на ту, которая была затрачена при использовании данного механизма.

Коэффициент полезного действия часто выражают в процентах и обозначают греческой буквой η (читается «эта»):

η =* 100% (24.2)

Поскольку числитель Aп в этой формуле всегда меньше знаменателя Aз , то КПД всегда оказывается меньше 1 (или 100%).

Конструируя механизмы, стремятся увеличить их КПД. Для этого уменьшают трение в осях механизмов и их массу. В тех случаях, когда трение ничтожно мало и используемые механизмы имеют массу, пренебрежимо малую по сравнению с массой поднимаемого груза, коэффициент полезного действия оказывается лишь немного меньше 1. В этом случае затраченную работу можно считать примерно равной полезной работе:

Следует помнить, что выигрыша в работе с помощью простого механизма получить нельзя.

Поскольку каждую из работ в равенстве (24.3) можно выразить в виде произведения соответствующей силы на пройденный путь, то это равенство можно переписать так:

выигрывая с помощью механизма в силе, мы во столько же раз проигрываем в пути, и наоборот.

Этот закон называют «золотым правилом» механики. Его автором является древнегреческий ученый Герон Александрийский, живший в I в. н. э.

«Золотое правило» механики является приближенным законом, так как в нем не учитывается работа по преодолению трения и силы тяжести частей используемых приспособлений. Тем не менее оно бывает очень полезным при анализе работы любого простого механизма.

Так, например, благодаря этому правилу мы сразу можем сказать, что рабочему, изображенному на рисунке 47, при двукратном выигрыше в силе для подъема груза на 10 см придется опустить противоположный конец рычага на 20 см. То же самое будет и в случае, изображенном на рисунке 58. Когда рука человека, держащего веревку, опустится на 20 см, груз, прикрепленный к подвижному блоку, поднимется лишь на 10 см.

Читайте также:  Предприятие по добыче полезных ископаемых открытым способом 6 букв

1. Почему затраченная при использовании механизмов работа оказывается все время больше полезной работы? 2. Что называют коэффициентом полезного действия механизма? 3. Может ли КПД механизма быть равным 1 (или 100%)? Почему? 4. Каким образом увеличивают КПД? 5. В чем заключается «золотое правило» механики? Кто его автор? 6. Приведите примеры проявления «золотого правила» механики при использовании различных простых механизмов.

источник

Рассмотрим режим установившегося движения. Для каждого полного цикла этого движения приращение кинетической энергии механизма равно нулю (6.76). Следовательно, работа Ли в уравнении (6.8) также равна нулю, как и работа Ас т сил тяжести. Таким образом, для установившегося движения уравнение работ (6.7в) имеет следующий вид:

то есть, за полный цикл установившегося движения работа всех движущих сил равна работе всех производственных Ап с и всех непроизводственных Ат сил сопротивления.

Механическим коэффициентом полезного действия (КПД) называется отношение абсолютной величины работы сил производственных сопротивлений к работе всех движущих сил за цикл установившегося движения:

или, принимая во внимание уравнение (6.10), получаем или по (6.10):

где |/ — механический коэффициент потерь, то есть отношение работы непроизводственных сопротивлений к работе движущих сил.

Чем меньше в механизме работа непроизводственных сопротивлений, тем меньше его коэффициент потерь и тем совершеннее механизм в энергетическом отношении, то есть, тем больше его коэффициент полезного действия. В некоторых случаях удобно вводить

в рассмотрение коэффициент , и тогда

Из (6.11 в) также следует общеизвестное правило, что коэффициент полезного действия всегда меньше единицы, поскольку работа Ат непроизводственных сопротивлений ни в одном реальном механизме не может равняться нулю. Также из (6.11в) мы можем определить другой частный вид, когда коэффициент полезного действия равен нулю, что возможно при Аа = Ат, то есть когда работа движущих сил равна работе сил непроизводственных сопротивлений механизма. В этом случае механизм движется вхолостую — движение механизма совершается без совершения полезной работы. Если же Ад

Рис. 6.14. Последовательное соединение механизмов Таким образом, КПД механизма изменяется в диапазоне

а коэффициенты ф и ЧК в пределах

Рассмотрим коэффициент полезного действия нескольких механизмов, соединенных последовательно (рис. 6.14). Первый механизм приводится в движение движущими силами, совершающими работу Аг Так как полезная работа каждого предыдущего механизма является работой движущих сил для каждого последующего, то коэффициент полезного действия каждого из них в отдельности будет равен

Общий коэффициент полезного действия равен . Его

значение можно получить, если перемножить все отдельные КПД каждого механизма rj,, г|2, . .

Значения работ за полное время установившегося движения машины пропорциональны средним значениям мощностей за тот же период времени. Поэтому (6.11) можно переписать в виде

Выше был рассмотрен простейший случай последовательного соединения механизмов. В современных машинах весьма часто соединение механизмов оказывается более сложным, например, таким как показано на рис. 6.15.

Рис. 6.15. Сложное соединение механизмов

Поток энергии от механизма 2 распределяется по двум направлениям. В свою очередь от механизма 3” поток энергии распределяется также по двум направлениям. Общая работа сил производственных сопротивлений равна Апс = Д, + Д, + Д,. Следовательно, общий КПД всей системы равен

На рис. 6.15 показаны три потока энергии от общего источника энергии: сплошной линией — поток I—I, штриховой линией — поток //—//, штрихпунктирной линией — поток III—III. Работа Лл может быть выражена через работы Д’, Д,, Д, и через соответствующие КПД отдельных механизмов:

где — общие КПД каждого из потоков I—I, II—II, III—

С учетом этого и (6.16), (6.17), общий КПД всей системы механизмов равен

Из этой формулы следует, что общий КПД действия в значительной степени зависит от той схемы распределения потоков энергии, которая была принята при проектировании общей схемы системы механизмов.

источник

В реальной действительности работа, совершаемая при помощи какого — либо устройства, всегда больше полезной работы, так как часть работы выполняется против сил трения, которые действуют внутри механизма и при перемещении его отдельных частей. Так, применяя подвижный блок, совершают дополнительную работу, поднимая сам блок и веревку и, преодолевая силы трения в блоке.

Введем следующие обозначения: полезную работу обозначим $A_p$, полную работу — $A_$. При этом имеем:

Коэффициентом полезного действия (КПД) называют отношение полезной работы к полной. Обозначим КПД буквой $\eta $, тогда:

Чаще всего коэффициент полезного действия выражают в процентах, тогда его определением является формула:

При создании механизмов пытаются увеличить их КПД, но механизмов с коэффициентом полезного действия равным единице (а тем более больше единицы) не существует.

И так, коэффициент полезного действия — это физическая величина, которая показывает долю, которую полезная работа составляет от всей произведенной работы. При помощи КПД оценивают эффективность устройства (механизма, системы), преобразующей или передающей энергию, совершающего работу.

Для увеличения КПД механизмов можно пытаться уменьшать трение в их осях, их массу. Если трением можно пренебречь, масса механизма существенно меньше, чем масса, например, груза, который поднимает механизм, то КПД получается немного меньше единицы. Тогда произведенная работа примерно равна полезной работе:

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):

Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:

где $Q_n$ — количество теплоты, полученное от нагревателя; $Q_$ — количество теплоты переданное холодильнику.

КПД идеальной тепловой машины, которая работает по циклу Карно равно:

где $T_n$ — температура нагревателя; $T_$ — температура холодильника.

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $\Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана?\textit

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

Воспользуемся определением коэффициента полезного действия для его нахождения:

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

Ответ. $\eta =\frac\cdot 100\%$

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $\eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$. Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

Газ совершает полезную работу, которую равна:

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_$). В результате имеем:

Преобразуем формулу (2.1) учитывая результаты (2.2) — (2.4):

Так как по условию $A_=A_0,\ $окончательно получаем:

Ответ. $A_=\left(\eta -1\right)A_0$

источник

Абсолютно гладких и абсолютно твёрдых тел в природе не существует. Поэтому при перемещении одного тела по другому возникает сила трения, которая всегда направлена в сторону, противоположную относительному перемещению. В зависимости от вида движения различают трение скольжения и трение качения.

Трением скольжения называется трение движения, при котором скорости соприкасающихся тел в точках касания различны. Оно обусловлсно шероховатостью и деформацией поверхностей, а также наличием молекулярного сцепления у прижатых друг к другу тел.

Основным законом трения скольжения является закон Амонтона- Кулона, который формулируется так: максимальная сила трения прямо пропорциональна нормальной составляющей внешних сил, действующих на поверхности тела, то есть

где /- коэффициент трения скольжения.

Рис. 39. Трение скольжения: а — конус трения, б — равновесие тела на наклонной

Коэффициент трения является отвлеченной величиной. При наличии силы трения Т (рис. 39, а) суммарная реакция R является геометрической суммой нормальной силы N и силы трения Т , то есть

Реакция R отклоняется от нормали N на некоторый угол р, называемый углом трения.

Из треугольника сил (рис. 39, а) видно, что

то есть коэффициент трения скольжения равен тангенсу угла трения.

Если коэффициент трения скольжения одинаков во всех направлениях движения, то множество полных реакций образует круговой конус, называемый конусом трения, с углом при вершине, равным двойному углу трения.

Свойство конуса трения заключается в том, что для равновесия тела, лежащего на шероховатой поверхности, равнодействующая приложенных к нему всех сил должна проходить внутри конуса трения. Это свойство носит название самоторможения и широко используется в механизмах. Тело, лежащее на наклонной плоскости (рис. 39, б) будет скользить по ней при угле наклона а , когда он больше угла трения р. При угле наклона а меньше угла наклона р, тело остается неподвижным вследствие самоторможения.

Читайте также:  Грецкие орехи полезные свойства перегородки

Трением качения называется тре>ше движения, при котором скорости соприкасающихся тел в точках касания одинаковы по величине и направлению.

Рис. 40. Трение качения

Если к цилиндру радиусом г приложить небольшую силу Р (рис. 40), то он будет находиться в состоянии покоя. При этом произойдёт перераспределение давлений на опорную поверхность и полная реакция R пройдёт через некоторую точку А и через точку О.

При каком-то критическом значении силы Р цилиндр придет в движение и будет равномерно перекатываться по опорной поверхности, а точка А перейдет в крайнее правое положение.

Обозначим буквой к максимальное значение плеча силы G относительно точки А. Составляя уравнение моментов относительно точки А,

Вследствие незначительной деформации тел плечо силы Р считаем равным радиусу г. Из этого условия равновесия определим силу Р, необходимую для равномерного качения цилиндра, которая будет:

Максимальное значение плеча к называется коэффициентом трения качения; он имеет размерность длины и измеряется в сантиметрах или миллиметрах.

При наличии сил трения в механизмах и сопротивления воздуха не вся затраченная работа используется в машинах или механических устройствах, то есть имеются механические потери.

Работа, которая преодолевает силы сопротивления, называется полезной работой АП.

Работа, необходимая на преодоление сил сопротивления, называется затраченной работой А3.

Отношение полезной работы к затраченной называется коэффициентом полезного действия (КПД).

Полезная работа всегда меньше затраченной, поэтому КПД, обозначаемый буквой г|, всегда меньше единицы и выражается десятичной дробью, а иногда в процентах. Формула КПД записывается следующим образом:

Если ряд механизмов соединен последовательно, то есть каждый последующий механизм получает движение от ведомого звена предыдущего механизма, тогда общий КПД п будет равен

где Л1»Л2»Лз»—Ля “ КПД каждого механизма в отдельности.

источник

Всякий механизм, совершающий работу, должен откуда-то получать энергию, за счет которой эта работа производится. В простейших случаях механизм лишь передает механическую работу от источника энергии к потребителю. Так действуют простые машины и все передаточные или приводные механизмы, представляющие собой различные комбинации простых машин; например, ременный привод передает работу от двигателя, вращающего ведущий, шкив, через ведомый шкив потребителю (станку).

Такой приводной механизм лишь передает определенную мощность от источника к потребителю. Однако при этом не вся работа, а значит и не вся мощность, получаемая механизмом от источника, передается потребителю.

Дело в том, что во всяком механизме действуют силы трения, на преодоление которых затрачивается часть работы, потребляемой механизмом. Эта работа превращается в тепло и обычно является бесполезной. Отношение мощности, которую механизм передает потребителю, ко всей мощности, подводимой к механизму, называется коэффициентом полезного действия данного механизма (сокращенно; к. п. д.).

Если подводимую к механизму мощность обозначить через , а отдаваемую механизмом потребителю — через , то к. п. д. механизма будет равен

.

При этом часть мощности, равная , теряется в самом механизме. Отношение этих потерь мощности в механизме ко всей мощности, подводимой к механизму, связано с к. п. д. простым выражением:

.

Так как потери мощности неизбежны во всяком механизме, то всегда и к. п. д. всякого механизма всегда меньше единицы; его обычно выражают в процентах. Всякий механизм стремятся сделать таким, чтобы бесполезные потери энергии в нем были по возможности малы, т. е. чтобы к. п. д. был возможно ближе к единице. Для этого уменьшают насколько возможно силы трения и всякие вредные сопротивления в механизме. В наиболее совершенных механизмах эти потери удается снизить настолько, что к. п. д. оказывается лишь на несколько процентов меньше единицы.

Многие машины получают или отдают энергию не в виде механической энергии, а в каком-либо другом виде. Например, паровая машина использует энергию, которой обладает нагретый и сжатый пар; двигатель внутреннего сгорания — энергию, которой обладают горячие и сжатые газы, образовавшиеся при сгорании горючей смеси. Электрический двигатель использует работу, совершаемую электромагнитными силами. Наоборот, генератор электрического тока получает энергию в виде механической, а отдает в виде электромагнитной энергии. Во всех этих случаях, помимо потерь на трение, могут возникать и другие потери, например нагревание проводников протекающим по ним электрическим током. Понятие к. п. д. и в этих случаях сохраняет прежний смысл: к. п. д. машины называют отношение мощности, отдаваемой машиной, к мощности, потребляемой машиной, независимо от того, в виде какой энергии эта мощность потребляется и отдается.

109.1 . В двойном блоке, имеющем радиусы 40 и 5 см, к веревке, навитой на меньший блок, приложена сила 1000 Н. Для того, чтобы преодолеть силы трения в блоке и поддерживать постоянной скорость его движения, ко второму концу блока приложена сила 130 Н. Каков к. п. д. блока?

109.2. Какую работу нужно произвести, чтобы, пользуясь полиспастом, к. п. д. которого равен 65%, поднять груз массы 250 кг на высоту 120 см?

109.3. Найдите к. п. д. установки, состоящей из электрического мотора, приводящего в движение водяной насос, который подает на высоту 4,7 м 75 л воды в секунду, если электромотор потребляет мощность 5 кВт.

109.4. Электромотор, имеющий к. п. д. 90%, приводит в действие насос, к. п. д. которого равен 60%. Каков к. п. д. всей установки?

109.5. Электропоезд движется равномерно со скоростью 60 км/ч. Двигатели электропоезда потребляют при этом мощность 900 кВт. Определите силу сопротивления, испытываемого всем поездом при движении, если известно, что общий к. п. д двигателей и передающих механизмов составляет 80%.

109.6. Можно ли поднимать груз массы 50 кг со скоростью 3 м/с при помощи электромотора, потребляющего электрическую мощность 1,4 кВт?

источник

1. Затраты энергии вы должны оценивать в одних и тех же единицах.

2. Затраченная всей системой энергия не может быть меньше потраченной непосредственно на достижение результата, то есть КПД не может быть больше 100%.

Одна из первых формул расчета выглядела так:
R=K x (350 – 20 x L) + Ddmg x (0,2 + 1,5 / L) + S x 200 + Ddef x 150 + C x 150

Сама формула приведена на картинке. В этой формуле имеются следующие переменные:
— R – боевая эффективность игрока;
— К – среднее количество уничтоженных танков (общее количество фрагов, деленное на общее количество боев):
— L – средний уровень танка;
— S – среднее количество обнаруженных танков;
— Ddmg – среднее количество нанесенного урона за бой;
— Ddef – среднее количество очков защиты базы;
— С – среднее количество очков захвата базы.

Значение полученных цифр:
— менее 600 – плохой игрок; такой КПД имеют около 6% всех игроков;
— от 600 до 900 – игрок ниже среднего; такой КПД имеют 25% всех игроков;
— от 900 до 1200 – средний игрок; такую эффективность имеют 43% игроков;
— от 1200 и выше – сильный игрок; таких игроков около 25%;
— свыше 1800 – уникальный игрок; таких не более 1%.

Американские игроки используют свою формулу WN6, выглядящую так:
wn6=(1240 – 1040 / (MIN (TIER,6)) ^ 0.164) x FRAGS + DAMAGE x 530 / (184 x e ^ (0.24 x TIER) + 130) + SPOT x 125 + MIN(DEF,2.2) x 100 + ((185 / (0.17+ e ^ ((WINRATE — 35) x 0.134))) — 500) x 0.45 + (6-MIN(TIER,6)) x 60

В этой формуле:
MIN (TIER,6) – средний уровень танка игрока, если он больше 6, используется значение 6
FRAGS – среднее количество уничтоженных танков
TIER – средний уровень танков игрока
DAMAGE – средний урон в бою
MIN (DEF,2,2) – среднее количество сбитых очков захвата базы, если значение больше 2,2 используется 2,2
WINRATE – общий процент побед

Как видно, в этой формуле не учитываются очки захвата базы, количество фрагов на низкоуровневой технике, процент побед и влияние начального засвета на рейтинге сказываются не очень сильно.

Компания Wargeiming ввела в обновлении показатель личного рейтинга эффективности игрока, который рассчитывается по более сложной формуле, учитывающей все возможные статистические показатели.

Из формулы Кх(350-20хL) видно, что чем выше уровень танка, тем меньшее количество очков эффективности получается за уничтожение танков, зато большее за нанесение урона. Поэтому, играя на низкоуровневой технике, старайтесь брать больше фрагов. На высокоуровневой – наносить больше урона (дамага). Количество очков полученных или сбитых очков захвата базы на рейтинг влияют несильно, причем за сбитые очки захвата очков КПД начисляется больше, чем за полученные очки захвата базы.

Поэтому большинство игроков улучшают свою статистику, играя на танках низших уровней, в так называемой песочнице. Во-первых, большинство игроков на низших уровнях – новички, не имеющие навыков, не использующие прокачанный экипаж с умениями и навыками, не использующие дополнительное оборудование, не знающие преимуществ и недостатков того или иного танка.

Независимо от того, на какой технике играете, старайтесь сбивать как можно большее количество очков захвата базы. Взводные бои сильно повышают рейтинг эффективности, так как игроки во взводе действуют скоординировано и чаще добиваются победы.

Понятие коэффициента полезного действия (КПД) может быть применено к самым различным типам устройств и механизмов, работа которых основана на использовании каких-либо ресурсов. Так, если в качестве такого ресурса рассматривать энергию, используемую для работы системы, то результатом этого следует считать объем полезной работы, выполненной на этой энергии.

В общем виде формулу КПД можно записать следующим образом: n = A*100%/Q. В данной формуле символ n применяется в качестве обозначения КПД, символ A представляет собой объем выполненной работы, а Q — объем затраченной энергии. При этом стоит подчеркнуть, что единицей измерения КПД являются проценты. Теоретически максимальная величина этого коэффициента составляет 100%, однако на практике достигнуть такого показателя практически невозможно, так как в работе каждого механизма присутствуют те или иные потери энергии.

Читайте также:  Полезные ископаемые западно сибирской

Двигатель внутреннего сгорания (ДВС), представляющий собой один из ключевых компонентов механизма современного автомобиля, также представляет собой вариант системы, основанной на использовании ресурса — бензина или дизельного топлива. Поэтому для нее можно рассчитать величину КПД.

Несмотря на все технические достижения автомобильной промышленности, стандартный КПД ДВС остается достаточно низким: в зависимости от использованных при конструировании двигателя технологий он может составлять от 25% до 60%. Это связано с тем, что работа такого двигателя сопряжена со значительными потерями энергии.

Так, наибольшие потери эффективности работы ДВС приходятся на работу системы охлаждения, которая забирает до 40% энергии, выработанной двигателем. Значительная часть энергии — до 25% — теряется в процессе отведения отработанных газов, то есть попросту уносится в атмосферу. Наконец, примерно 10% энергии, вырабатываемой двигателем, уходит на преодоление трения между различными деталями ДВС.

Поэтому технологи и инженеры, занятые в автомобильной промышленности, прилагают значительные усилия для повышения КПД двигателей путем сокращения потерь по всем перечисленным статьям. Так, основное направление конструкторских разработок, направленное на уменьшение потерь, касающихся работы системы охлаждения, связано с попытками уменьшить размер поверхностей, через которые происходит теплоотдача. Уменьшение потерь в процессе газообмена производится преимущественно с использованием системы турбонаддува, а снижение потерь, связанных с трением, — посредством применения более технологичных и современных материалов при конструировании двигателя. Как утверждают специалисты, применение этих и других технологий способно поднять КПД ДВС до уровня 80% и выше.

источник

Энергия, подводимая к механизму в виде работы движущих сил Адв.с. и моментов за цикл установившегося движения, расходуется на совершение полезной работы Ап.с., а также на совершение работы АFтр, связанной с преодолением сил трения в кинематических парах и сил сопротивления среды.

Рассмотрим установившееся движение. Приращение кинетической энергии равно нулю, т.е.

= 0.

При этом работы сил инерции и сил тяжести равны нулю АРи = 0, АG = 0. Тогда для установившегося движения работа движущих сил равна

Следовательно, за полный цикл установившегося движения работа всех движущих сил равна сумме работ сил производственных сопротивлений и непроизводственных сопротивлений (сил трения).

Механический коэффициент полезного действия η (КПД) – отношение работы сил производственных сопротивлений к работе всех движущих сил за время установившегося движения:

η = . (3.61)

Как видно из формулы (3.61), КПД показывает, какая доля механической энергии, приведенной к машине, полезно расходуется на совершение той работы, для которой машина создана.

Отношение работы сил непроизводственных сопротивлений к работе движущих сил называется коэффициентом потерь:

ψ = . (3.62)

Механический коэффициент потерь показывает, какая доля механической энергии, подведенной к машине, превращается в конечном счете в теплоту и бесполезно теряется в окружающем пространстве.

Отсюда имеем связь между КПД и коэффициентом потерь

Из этой формулы вытекает, что ни в одном механизме работа сил непроизводственных сопротивлений не может равняться нулю, поэтому КПД всегда меньше единице (η

3.2.2.2 Определение КПД при смешанном соединении

На практике соединение механизмов оказывается более сложным. Чаще последовательное соединение сочетается с параллельным. Такое соединение называется смешанным. Рассмотрим пример сложного соединения (рисунок 3.17).

Поток энергии от механизма 2 распределяется по двум направлениям. В свою очередь от механизма 3 ¢¢ поток энергии распределяется также по двум направлениям. Общая работа сил производственных сопротивлений равна:

Общий КПД всей системы будет равен:

Чтобы определить общий КПД, нужно выделить потоки энергии, в которых механизмы соединены последовательно, и рассчитать КПД каждого потока. На рисунке 3.17 показаны сплошной линией I-I, штриховой линией II-II и штрих- пунктирной линией III-III три потока энергии от общего источника.

I I

1 2 3 ¢ n ¢

Адв.с. А1 А ¢ 2 А ¢ 3 … А ¢ n-1 A ¢ n

II А ¢¢ 2 II

А ¢¢ 3 4 ¢¢ А ¢¢ 4 А ¢¢ n-1 n ¢¢ A ¢¢ n

III 3 ¢¢ …

А ¢¢¢ 3 III

А ¢¢¢ 4 5 ¢¢¢ А ¢¢¢ 5 А ¢¢¢ n-1 n ¢¢¢ A ¢¢¢ n

4 ¢¢¢ …

Рисунок 3.17 — Схема смешанного соединения механизмов

КПД каждого потока будет равен:

Выразим работу движущих сил из этих уравнений:

А ¢ дв.с=A ¢ n / η ¢ 1n

Общая работа движущих сил всей системы будет равна сумме

Подставим это выражение в формулу (3.64), получим уравнение коэффициента полезного действия для смешанного соединения

(3.66)

Для параллельно соединенных механизмов методика определения КПД аналогична предыдущему случаю.

Дата добавления: 2015-10-19 ; просмотров: 1084 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Иметь представление о мощности при прямолинейном и кри­волинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.

Знать зависимости для определения мощности при поступа­тельном и вращательном движениях, КПД.

Уметь рассчитать мощность с учетом потерь на трение и сил инерции.

Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.

Мощность — работа, выполненная в единицу времени:

Единицы измерения мощности: ватты, киловатты,

Мощность при поступательном движении (рис. 16.1)

Учитывая, что S/t = vcp, полу­чим

где F — модуль силы, действующей на тело; vср — средняя скорость движения тела.

Средняя мощность при поступательном движении равна про­изведению модуля силы на среднюю скорость перемещения и на ко­синус угла между направлениями силы и скорости.

Мощность при вращении (рис. 16.2)

Тело движется по дуге радиуса r из точки М1 в точку M2

где Мвр — вращающий момент.

получим

где ωcp — средняя угловая скорость.

Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.

Если при выполнении работы усилие машины и скорость дви­жения меняются, можно определить мощность в любой момент вре­мени, зная значения усилия и скорости в данный момент.

Коэффициент полезного действия

Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы со­вершает еще и дополнительную работу.

Отношение полезной работы к полной работе или полезной мощ­ности ко всей затраченной мощности называется коэффициентом по­лезного действия (КПД):

Полезная работа (мощность) расходуется на движение с задан­ной скоростью и определяется по формулам:

Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечки и тому подобные потери.

Чем выше КПД, тем совершеннее машина.

Примеры решения задач

Пример 1. Определить потребную мощность мотора лебедки для подъема груза весом 3 кН на высоту 10 м за 2,5 с (рис. 16.3). КПД механизма лебедки 0,75.

1. Мощность мотора используется на подъем груза с заданной скоростью и преодоление вредных сопротивлений механизма лебедки.

Полезная мощность определяется по формуле

Р = Fv cos α.

В данном случае α = 0; груз движется поступательно.

3. Необходимое усилие равно весу груза (равномерный подъем).

6. Полезная мощность Р = 3000 • 4 = 12 000 Вт.

7. Полная мощность. затрачиваемая мотором,

Пример 2. Судно движется со скоростью 56 км/ч (рис. 16.4). Двигатель развивает мощность 1200 кВт. Определить силу сопротивления во­ды движению судна. КПД машины 0,4.

1. Определяем полезную мощность, используемую на движение с заданной скоростью:

2. По формуле для полезной мощности можно определить движущую силу судна с учетом условия α = 0. При равномерном дви­жении движущая сила равна силе сопротивления воды:

3. Скорость движения судна v = 36 * 1000/3600 = 10 м/с

4. Сила сопротивления воды

Сила сопротивления воды движению судна

Пример 3. Точильный камень прижимается к обрабатываемой детали с силой 1,5 кН (рис. 16.5). Какая мощ­ность затрачивается на обработку детали, если коэффициент трения материала камня о деталь 0,28; деталь вращается со скоростью 100 об/мин, диаметр детали 60 мм.

1. Резание осуществляется за счет трения между точильным камнем и обрабатываемой деталью:

Пример 4. Для того чтобы поднять волоком по наклонной плоскости на высоту H = 10 м станину массой т == 500 кг, воспользовались электрической лебедкой (рис. 1.64). Вращающий момент на выходном барабане лебедки М = 250 Н-м. Ба­рабан равномерно вращается с частотой п = 30 об/мин. Для подъема станины лебедка ра­ботала в течение t = 2 мин. Определить коэффициент по­лезного действия наклонной плоскости.

где Ап.с. — полезная работа; Адв — работа движущих сил.

В рассматриваемом примере полезная работа — работа силы тяжести

Вычислим работу движущих сил, т. е. работу вра­щающего момента на выходном валу лебедки:

Угол поворота барабана лебедки определяется по уравнению равномерного вращения:

Подставив в выражение работы движущих сил число­вые значения вращающего момента М и угла поворота φ, получим:

Коэффициент полезного действия наклонной плоскости составит

Контрольные вопросы и задания

1. Запишите формулы для расчета работы при поступательном и вращательном движениях.

2. Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести.

3. Колодочным тормозом останавливают барабан после отклю­чения двигателя (рис. 16.6). Определите работу торможения за 3 обо­рота, если сила прижатия колодок к барабану 1 кН, коэффициент трения 0,3.

4. Натяжение ветвей ременной передачи S1 = 700 Н, S2 = 300 Н (рис. 16.7). Определите вращающий момент передачи.

5. Запишите формулы для расчета мощности при поступатель­ном и вращательном движениях.

6. Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин.

7. Определите общий КПД механизма, если при мощности дви­гателя 12,5 кВт и общей силе сопротивления движению 2 кН ско­рость движения 5 м/с.

8. Ответьте на вопросы тестового задания.

Тема 1.14. Динамика. Работа и мощность

Последнее изменение этой страницы: 2016-04-08; Нарушение авторского права страницы

источник

Источники:
  • http://studopedia.ru/18_30799_mehanicheskiy-koeffitsient-poleznogo-deystviya-kpd.html
  • http://phscs.ru/physics7/efficiency
  • http://studref.com/472202/tehnika/mehanicheskiy_koeffitsient_poleznogo_deystviya
  • http://www.webmath.ru/poleznoe/fizika/fizika_132_formula_kojefficienta_poleznogo_dejstvija.php
  • http://studme.org/187787/tehnika/ponyatie_trenii_koeffitsiente_poleznogo_deystviya
  • http://sfiz.ru/uchebnik/uch_mehanika/uch_rabota/109-koefficient-poleznogo-deystviya-mehanizmov
  • http://www.kakprosto.ru/kak-102203-kak-nayti-koefficient-poleznogo-deystviya
  • http://helpiks.org/5-81828.html
  • http://infopedia.su/2x2d8c.html