Меню Рубрики

В каких единицах измеряется коэффициент полезного действия насоса

Мощность является одной из основных характеристик насоса. В настоящее время под термином «насос» понимается специальное устройство, служащее для перемещения перекачиваемой среды (твердых, жидких и газообразных веществ).

В отличие от водоподъемных механизмов, которые тоже предназначены для перемещения воды, насосный агрегат увеличивает давление или кинетическую энергию перекачиваемой жидкости.

Полезная мощность насоса – мощность, сообщаемая устройством подаваемой жидкой среде. Но прежде чем перейти к понятию мощности необходимо рассмотреть ещё два параметра: подача и напор.

Подача насоса представляет собой количество жидкости, подаваемой в единицу времени и обозначается символом Q.

Напором насоса называется приращение механической энергии, получаемой каждым килограммом жидкости проходящей через насосный агрегат, т.е. разность удельных энергий жидкости при выходе из насоса и входе в него. Другими словами напор устройства показывает, на какую высоту в метрах насос поднимет столб воды.

И, наконец, третьим, интересующим нас параметром является мощность насоса N. Мощность обычно измеряется в киловаттах (кВт).

Полезная мощность насоса Nп – это полное приращение энергии, получаемое всем потоком в единицу времени. Чтобы рассчитать мощность насоса используется формула:

где y – удельный вес жидкости;
Q – подача насоса;
Н – напор насоса.

Потребляемая мощность насоса N – мощность потребляемая устройством – мощность подводимая на вал устройства от двигателя.

В зависимости от источника информации она ещё может называться:

Мощность на валу насоса Nв – это мощность которую затрачивает центробежный агрегат на то, чтобы покрыть потери энергии

где η — коэффициент полезного действия (КПД) насоса

Вследствие потерь внутри машины только часть механической энергии, полученной им от двигателя, преобразуется в энергию потока жидкости. Степень использования энергии двигателя измеряется значением полного КПД насоса центробежного типа.

КПД – коэффициент полезного действия насоса – является одним из его основных качественных показателей и характеризует собой величину потерь энергии.

ηо — объемный КПД – характеризует объемные потери

ηг — гидравлический КПД – характеризует гидравлические потери

ηм — механический КПД – характеризует механические потери

Анализируя причины возникновения потерь в насосе, можно найти пути к повышению его КПД.

Все виды потерь делятся на три категории: гидравлические, объемные и механические.

Гидравлические потери – часть энергии, получаемой потоком от колеса насоса, затрачивается на преодоление гидравлических сопротивлений при движении потока внутри насосного агрегата, ведут к снижению высоты напора.

Объемные потери – паразитные протечки (утечки) внутри насосной части — в уплотнениях лопастного колеса и в системе уравновешивания осевого давления ведут к уменьшению подачи.

Механические потери – часть энергии, получаемой насосом от двигателя, расходуется на преодоление механического трения внутри агрегата. В машине имеют место: трение колеса и других деталей ротора о жидкость, трение в сальниках и трение в подшипниках. Механические потери ведут к падению мощности всего устройства.

Таким образом, полный КПД насоса определяется гидродинамическим совершенствованием проточной части, качеством системы внутренних уплотнений и величиной потерь на механическое трение.

Мощность насоса фактически – это мощность сообщаемая ему электродвигателем. Циркуляционные аппараты, установленные в бытовых системах имеют довольно небольшую мощность и как следствие низкое энергопотребление. Фактически такие машины не поднимают воду на высоту, а только способствуют её перемещению далее по трубопроводу преодолевая местные сопротивления такие как изгибы, краны и отводы.

Кроме циркуляционных агрегатов в систему трубопровода могут быть смонтированы насосы для повышения давления.

При использовании в трубопроводе циркуляционного насоса значительно увеличивается эффективность системы отопления дома. К тому же появляется возможность сократить диаметр трубопровода и подсоединить котел с повышенными параметрами теплоносителя.

Для обеспечения бесперебойной и эффективной работы системы отопления необходимо выполнить небольшой расчет.

Требуется определить необходимую мощность котла – эта величина будет базовой при расчете системы отопления.

Согласно СНиП 2.04.07 “Тепловые сети” для каждого дома существую свои нормы потребления тепла (для холодного времени года, т.е. минус 25 – 30 градусов цельсия).
для домов в 1-2 этажа требуется 173 – 177 Вт/квадратный метр
для домов в 3-4 этажа требуется 97 – 101 Вт/квадратный метр
если 5 этажей и более нужно 81 – 87 Вт/квадратный метр.

Рассчитайте площадь отапливаемых помещений Вашего дома и умножьте на соответствующее этажности Вашего дома значение.

Оптимальный расход воды, рассчитывается по простой формуле:
Q=P,
где Q — расход теплоносителя через котел, л/мин;
Р — мощность котла, кВт.

Например, для котла мощностью 20 кВт расход воды составляет примерно 20 л/мин.

Для определения расхода теплоносителя на конкретном участке трассы, используем эту же формулу. Например, у Вас установлен радиатор мощностью 4 кВт, значит расход теплоносителя составит 4 литра в минуту.

Далее требуется определить мощность циркуляционного насоса. Чтобы определить мощность циркуляционного устройства воспользуемся правилом, на 10 метров длины трассы требуется 0,6 метра напора. Например при длине трассы 80 метров требуется агрегат с напором не менее 4,8 метра.

Для того, чтобы узнать какая мощность насоса отопления потребуется Вам — воспользуйтесь калькулятором, размещенным в статье по подбору мощность насоса для отопления насоса.

Насос для отопления с требуемыми параметрами Вы можете посмотреть в нашем каталоге.

Следует отметить, что представленный в статье расчет носит справочный характер. Для того чтобы определить мощность центробежного насоса для Вашего дома воспользуйтесь советами наших специалистов или рекомендациями инженеров-теплотехников.

Для того, чтобы обеспечить постоянное функционирование системы отопления желательно установить два насоса. Один агрегат будет функционировать постоянной, второй (установленный на байпасе) – находится в резерве. При поломке или какой-то неисправности рабочего оборудования, Вы всегда сможете отключить его и демонтировать из контура, а в работу вступить резервный механизм. В случае когда монтаж байпасной ветки трубопровода затруднен, возможен другой вариант: один агрегат установлен в системе, а другой лежит в запасе на случай выхода из строя или поломки первого.

Подбор необходимого насоса осуществляется по каталогу. Из выбранных насосов предпочтения отдаются тем, которые потребляют меньшую мощность и обладают более высоким КПД. Ведь показатели мощности и КПД в дальнейшем определяют затраты на электроэнергию при эксплуатации оборудования.

источник

Полезную, или теоретическую, мощность насоса N (кВт) определяют как произведение весовой подачи на напор:

где pg— удельный вес жидкости, Н/м 3 ; Q— объемная подача насоса, м/с; H— напор, развиваемый насосом, м.

Полезная (или теоретическая) мощность насоса Nп всегда меньше затрачиваемой мощности или мощности, подводимой к валу насоса N, так как в насосе неизбежно возникновение потерь энергии:

Общие потери (гидравлические, объемные и механические), возникающие при передаче энергии перекачиваемой жидкости, учитывает полный коэффициент полезного действия.

Гидравлическими потерями называют потери энергии на преодоление гидравлических сопротивлений при движении жидкости от входа в насос до выхода из него. Эти потери энергии учитываются гидравлическим КПД

где Н— требуемый напор насоса; h— потери напора внутри насоса.

В современных насосах КПД = 0,8. 0,95.

Объемными потерями называют потери энергии, возникающие в результате утечки жидкости из нагнетательной части насоса во всасывающую. Например, через рабочее колесо выходит жидкость в количестве Qк, основная часть которой по ступает в напорный патрубок насоса, а другая часть возвращается на всасывание через зазоры в уплотнении между корпусом насоса и колесом. При этом теряется часть энергии. Эти потери оценивают объемным КПД насоса:

где Q — подача насоса; Qк расход жидкости, проходящей через колесо насоса, в современных насосах 0,9. 0,98.

Потери энергии, возникающие вследствие трения в подшипниках, сальниках, а также вследствие трения наружной поверхности рабочего колеса о жидкость, называют механическими потерями. Эти потери учитываются механическим КПД:

где N— мощность, подводимая к валу насоса; Nтр — потери мощности на преодоление сопротивления трения.

Механический КПД может составлять 0,95. 0,98. Полный КПД насоса представляет собой произведение всех трех коэффициентов полезного действия:

и характеризует совершенство конструкции насоса и степень его изношенности.

Максимальный КПД крупных современных насосов достигает 0,9 и более, а КПД малых насосов может составлять 0,6. 0,7.

На КПД насоса влияет коэффициент быстроходности. Общий характер этого влияния показывают кривые, приведенные на рис. из которых следует, что максимальные КПД соответствуют диапазону ns = 140. 220 об/мин, причем существенное влияние оказывает подача Q, т. е. размер насоса. С ростом подачи Q увеличивается и КПД насоса.

Влияние быстроходности на характеристики (а)

При непосредственном соединении вала насоса с валом электродвигателя мощность Nдв (кВт) электродвигателя

где К— коэффициент запаса, учитывающий случайные перегрузки двигателя; при мощности двигателя до 2 кВт рекомендуется принимать коэффициент К равным 1,5; от 2 до 5 кВт— 1,5. 1,25; от 5 до 50 кВт- 1,25.. 1,15; от 50 до 100 кВт-1,15. 1,05; более 100 кВт- 1,05.

Если вал насоса соединен с валом двигателя редуктором или ременной передачей, то мощность двигателя Nдв = KN/h пр , где h пр— КПД привода или редуктора.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9635 — | 7315 — или читать все.

193.124.117.139 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Методика испытания насосов.

Графическая характеристика Q-H.

Графическая зависимость основных технических показателей(напора, мощности, КПД, допускаемой частоты всасывания) от подачи при постоянных значениях частоты вращения работы колеса , вязкости и плотности жидкости при входе в насос называется характеристикойнасоса.

Напорную характеристику насоса

H = f (Q) –кривая Q-H

Энергетическая характеристика насоса:

N= f (Q)-кривая Q-H

h = f (Q) –кривая Q-η

H в доп. = f (Q).

Для испытания насос устанавливают на стенде, оборудованном аппаратурой, приборами для измерения расхода давления, вакуума и потребляемой мощностью. После пуска насоса подачу регулируют изменением степени открытия задвижки на напорной линии. Таким образом, устанавливают несколько значений подачи и измеряют соответствующее им значение напора и потребляемой мощности.

Полученные значения Q, H и N наносят на график и соединяют плавными линиями.

Характеристики насоса имеют характерные отличительные точки и области:

1). Начальная точка соответствует работе насоса при закрытой задвижке напорном патрубке(Q=0). В этом случае насос развивает напор H0 и потребляет мощность N0

2) Оптимальная точка характеристики m режиму работы при максимальном значении КПД, т.е. оптимальному режиму насоса( зона между точками»а» и «в»).

3).Максимальная точка характеристики К (конечная точка кривой Q-H) соответствует тому значению подачи после достижения которого насос может войти в кавитационный режим.

Для разных насосов существуют следующие кривые Q-H;

а) непрерывно снижающиеся, стабильные(рис.4а),

б) с возрастающим участком, имеющим максимум нестабильные характеристики.

Вид характеристики насоса зависит от коэффициента быстроходности.

Мощность- это работа в единицу времени.

Полезной мощностью называют мощность, сообщаемую насосом подаваемой жидкости.

Q – в м³/с, Р – в МПа,то

N – в кВт, Nп = 1000 ∙ Qр

При подаче Qп выраженной кг/с:

N =1000∙ Qм ∙ (р : ρ).

Если напор насоса выражен в м. ст. перекачиваемой жидкости, то:

Nп = 0,001∙ρ∙g∙Q∙H

Мощность, потребляемая насосом

η – к.п.д. насоса, следовательно, η = N/Nп

Причём, к.п.д. насоса учитывает гидравлические, объёмные и механические потери.

Гидравлические потери- потери энергии на преодоление гидравлического сопротивления при движении жидкости от входа в насос до выхода из него. Гидравлические потери оцениваю гидравлическое к.п.д. насоса.

η r =Nr ∙ (Nп + Nr)

где, Nп- полезная мощность насоса;

Nr – мощность, затраченная на преодоление гидравлических сопротивлений в насосе.

Объёмные потери возникают вследствие перетекания части жидкости из области высокого давления в область пониженного давления и вследствие утечек жидкости через сальники. Объёмные потери определяю объёмным к.п.д. насоса:

Ηо= Nп /(Nп + Nо),

Где -мощность, потерянная в результате перетекания жидкости и утечек.

Механические потери слагаются из потерь на трение в подшипниках, сальниках и дисках рабочего колеса, а также из потерь на трение наружной поверхности рабочего колеса о жидкость. Механические потери оцениваются механическим к.п.д. насоса

ηм =(Nп – Nм) / Nп, где

— мощность, затраченная на преодоление механических потерь.

Читайте также:  Полезна ли соляная пещера при щитовидке

Коэффициент полезного действия насоса равен произведению гидравлического, объемного и механического коэффициентов полезного действия.

η = ηт *η0 * ηм

Двигатель насоса подбирают так, чтобы N двигателя > N насоса.

Контрольные вопросы:

1. Дать определение основным параметрам насосов и воздуходувок.

2. Вычертить и описать графическую характеристику Q-H.

3.Описать методику испытания насосов.

5. Дать определение мощности и кпд насоса .Как эти показатели зависят от потерь в насосе.

Дата добавления: 2014-01-06 ; Просмотров: 267 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

ОСНОВНЫЕ ПАРАМЕТРЫ РАБОТЫ НАСОСОВ

Подача, напор, мощность, КПД.

Высота всасывания.

Теоретические основы движения жидкости в центробежном насосе.

Характеристики центробежных насосов. Виды характеристик.

Подача, напор, мощность, КПД

Работа центробежного насоса характеризуется такими основными параметрами.

Подача – количество жидкости, которое подается насосом в напорный патрубок за единицу времени. Как следует из определения, расход жидкости, проходящей в трубопроводе, равен подаче нагнетателя, сообщающего этой жидкости движение. Различают понятия объемной Q и массовой подачи насоса M, которые связаны между собой таким соотношением:

(2.1)

где r- плотность жидкости при температуре перекачки.

При установившемся движении и неизменной плотности жидкости расход равен:

(2.2)

где F – поперечное сечение трубопровода, м 2

υ – средняя скорость потока, м/с

Напор понятие энергетическое.Напором (Н) называется приращение удельной энергии потока среды (энергии, отнесенной к массе 1 кг) при прохождении ее через рабочие органы насоса.

Принято различать напор манометрический, который определяется по показаниям приборов у всасывающего и напорного патрубков, и напор требуемый, подсчитанный по схеме насосной установки.

Рис. 2.1. Схема насосной установки: 1 – насос; 2 – электродвигатель; 3 – задвижка; 4 – манометр; 5 – напорный трубопровод; 6 – резервуар приемник; 7 – вакуумметр; 8 – всасывающий трубопровод; 9 – резервуар отборник; 10 – приемный клапан.

Обозначим: рм – давление, показываемое манометром, Па; рв – давление, показываемое вакуумметром Па, НВ – геометрическая (геодезическая) высота всасывания, м; НГГВСГН – полная геометрическая высота подъема жидкой среды, м; Zв – превышение вакуумметра над точкой его подключения, м; Zм – превышение манометра над точкой его подключения, м; Z – разность уравнении сечений (I-I) и (II-II), м; — напор жидкости на входе в насос по отношению к плоскости отсчета, проходящей через ось насоса, м; — напор жидкой среды на выходе из насоса по отношению к той же плоскости отсчета, м.

Тогда согласно определению напора

(2.3)

Т.к. а ,

(2.4)

В выражении (2.4) сумма первых двух членов представляет собой разность избыточных давлений в сечениях I-I и II –II, приведенных к оси насоса, и называется манометрическим напором.

(2.5)

Определим требуемый напор по схеме установки:

Из уравнения Бернулли для сечений 0-0 и I-I (приняв за плоскость сравнения нижний уровень)

Из уравнений Бернулли для сечений II –II и К-К (приняв за плоскость сравнения ось насоса)

Найдем значение напора, рассматривая правые части уравнений (левые рассмотрены при определении манометрического напора.)

Сумма потерь во всасывающем и нагнетательном трубопроводах , а

(2.6)

Полные потери напора в трубопроводе складываются из потери напора на трение и суммы потерь на местные сопротивления:

Таким образом, в общем случае напор насоса расходуется на преодоление противодавления в напорном резервуаре, геометрическую высоту подъема жидкой среды и преодоление сопротивлений в трубопроводе.

Мощность.Под мощностью понимают энергию, сообщаемую или затрачиваемую в единицу времени. Используя такие понятия, как напор насоса можно определить полезную мощность потока жидкости, выходящей из нагнетателя. Если каждой единице веса капельной жидкости сообщается энергия Н, то при весовой подаче насоса, равной , жидкость выходит из насоса, обладая полезной мощностью

(2.7)

В любой насосной установке мощность в различных ее узлах не одинакова. Чаще всего приводом для нагнетателя является электродвигатель, который потребляет мощность Nэ. Эта мощность в электродвигателе преобразуется в механическую мощность, которая выходит от электродвигателя в виде мощности на валу Nв. Вполне естественно, что мощность на валу меньше, чем мощность электрическая, так как часть мощности теряется при работе электродвигателя. Потери мощности в электродвигателе учитываются КПД электродвигателя (ηэ) в виде зависимости

. (2.8)

Таким образом, нагнетателю подается мощность на валу, или как ее называют, потребляемая мощность нагнетателя.

Коэффициент полезного действия насоса (КПД).

Потери мощности в нагнетателе, определяемые величиной ηн , подразделяют на гидравлические, объемные и механические.

Механическими являются потери мощности на различные виды трения в рабочем органе нагнетателя, hм — механический КПД; который учитывает механические потери энергии в подшипниках, уплотнениях насоса, а также при трении диска рабочего колеса о жидкость.

Объемные потери возникают в результате утечек жидкости через уплотнения в нагнетателе, а также перетоков из областей высокого давления в области низких, обусловленных особенностями конструкций. Перетоки отмечаются в лопастных нагнетателях. Там жидкость может перетекать обратно во всасывающий патрубок с периферии рабочего колеса через зазоры между рабочим колесом и корпусом нагнетателя, hо — объемный КПД, который учитывает потери энергии вследствие утечек жидкости в насосе.

Гидравлический КПД учитывает потери, которые возникают вследствие наличия гидравлических сопротивлений в подводе, рабочем колесе и отводе, hг — гидравлический КПД, который учитывает потери энергии на преодоление гидравлического сопротивления при прохождении жидкости через насос.

Числовые значения составляющих КПД насоса зависят от конструкции насоса, качества его изготовления и условий эксплуатации. Они могут быть определены опытным путем и в лабораторных условиях.

Таким образом, КПД нагнетателя равен произведению гидравлического механического и объемного КПД:

(2.9)

Высота всасывания

Высота всасывания является важным параметром при проектировании насосной установки. Она определяет высотное расположение насоса по отношению к отметке уровня воды в приемном резервуаре или источнике, из которого жидкая среда перекачивается насосом. Неточности ее расчета могут привести к ухудшению и даже полному срыву работы насоса.

Всасывание жидкости насосом происходит под действием разности внешнего давления Р в приемном резервуаре и давления Р1 на входе в насос или разности напоров . Согласно уравнению Бернулли, разность напоров затрачивается на подъем жидкости на высоту всасывания Нвс, на движение жидкости со скоростью υ, т.е. созданию скоростного напора , и на преодоление гидравлических потерь во всасывающей трубе hвс. Если жидкость засасывается из открытого бака, то внешнее давление равно атмосферному и можно записать равенство

Чтобы происходило всасывание, давление Р1 должно быть больше давления Рн.п. насыщенных паров жидкости при данной температуре. Тогда с учетом приведенного выше равенства условие нормальной работы насоса выразится следующим образом:

(2.10)

(2.11)

Из выражения (2.11) следует, что высота всасывания насоса уменьшается со снижением барометрического давления Ра и с увеличением давления паров Рн.п.. величина Рн.п возрастает с повышением температуры, поэтому при повышении температуры жидкости допустимая высота всасывания уменьшается. Когда давление Р1 становится равным Рн.п , из жидкости начинают интенсивно выделяться пары и растворенные в ней газы. При этом, под действием противодавления Рн.п паров и газов высота всасывания снижается и может достигнуть нуля.

Высота всасывания снижается также при увеличении скорости жидкости во всасывающей трубе и соответствующем возрастании потерь hвс. Обычно высота всасывания при перекачивании холодных жидкостей не превышает 5-6 м; при перемещении нагретых жидкостей она может быть значительно меньше. Поэтому горячие, а также вязкие жидкости подводят к насосу с избыточным давлением или с подпором на стороне всасывания.

Выражение (2.11) является общим для всех насосов, хотя процессы всасывания и нагнетания существенно отличаются для насосов различных типов.

Дата добавления: 2016-04-06 ; просмотров: 7202 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источник

Здравствуйте, читатели блога nasos-pump.ru

Продолжим рубрику «Общее» и рассмотрим такие понятия как коэффициент полезного действия (КПД) и мощность центробежных насосов. Электрический центробежный насос состоит из привода – электрического двигателя и насосной части. Двигатель – это электрическая машина, которая преобразовывает энергию электрического поля в энергию вращения на валу. Мощность, которая подводиться к валу насоса, называется подводимой. Она определяется как произведение крутящего момента на валу насоса к его угловой скорости Центробежный насос это – гидравлическая машина, в которой подводимая вращательная энергия от двигателя преобразуется в энергию потока жидкости. Подбор насосов под конкретные цели и задачи производится по каталогам. В результате выбора учитываются такие показатели как напор и расход, потребляемая мощность и КПД насоса, а также его кавитационная характеристика. Выбранный насос должен работать с высоким КПД, без кавитации в требуемом диапазоне напора и расхода. Из нескольких выбранных вариантов предпочтение отдается тем насосам, которые потребляют меньшую мощность, имеют более высокий КПД, обладают меньшим значением допустимого кавитационного запаса и имеют меньший вес и габаритные размеры.

Между мощностью, потребляемой электрическим двигателем от электрической сети, мощностью на валу двигателя и гидравлической мощностью, насоса существует прямая связь. В процессе производства насосов на заводе изготовителе используются следующие обозначения этих видов мощности.

P1 (кВт) Входная электрическая мощность насосов – это мощность, которую электрический двигатель насоса забирает от электрической сети питания.

P2 (кВт) Мощность на валу электрического двигателя – это мощность, которую двигатель передает на вал насоса. Соотношение входная электрическая мощность насоса P1 равна мощности на валу электрического двигателя P2, разделённой на КПД электрического двигателя.

P3 (кВт) Входная мощность насоса равна мощности P2, с условием, что муфта соединяющая вал насоса и вал электрического двигателя не рассеивает энергию.

P4 (кВт) Гидравлическая или полезная мощность насоса. Это та мощность, которая получается в результате работы насоса в виде расхода и напора жидкости.

Как это выглядит наглядно, можно посмотреть на (Рис. 1).

Коэффициент полезного действия

Коэффициент полезного действия двигателя центробежного насоса представляет собой отношение полезной мощности к потребляемой. Обозначается он буквой η (эта). Схематически все это изображено на (Рис. 2)

КПД двигателя, никогда не будет больше единицы (100%) ни при каких условиях, ибо «вечного двигателя» еще не изобрели, а все существующие приводы имеют потери. Потребляемая мощность P1 двигателя больше на величину возникающих в электрическом двигателе механических и тепловых потерь Pvдв. (Рис. 2).

Коэффициентом полезного действия насоса как было сказано выше, называется отношение гидравлической мощности к подводимой мощности на валу насоса, а их разность указывает на потери мощности в насосе.

Потери мощности в центробежном насосе также складываются из нескольких составляющих, а именно: гидравлических, механических и объёмных потерь Рvнас. (Рис. 2). Общий КПД насосов представляет собой произведение коэффициентов полезного действия объемного, гидравлического и механического. КПД насоса характеризует степень конструктивного его совершенства, как в механическом, так и гидравлическом отношении.

Потери гидравлической мощности в насосе состоят из потерь на преодоления сопротивлений (трение) в рабочем колесе и корпусе во время движения жидкости от всасывающего патрубка, к напорному патрубку и вихревых потерь. Потери на преодоление сопротивления трения очень сильно зависят от конструктивных особенностей насосов размеров их проточной части, качества обработки (шероховатости) стенок и поверхностей насоса. Данные потери пропорциональны квадрату скорости течения жидкости. Возникающие в насосе вихревые потери зависит от многих факторов. Очень большие вихревые потери появляются при внезапном расширении сечения или резком повороте потока жидкости. Возникают вихревые потери вследствие отрыва потока от поверхности рабочего колеса или при режимах работы насоса вне предела его рабочей характеристики. Гидравлический КПД насосов находится в пределах ηг= 0,85…0,96.

Н – напор создаваемый насосом;

h – потери напора внутри насоса

Механические потери обусловлены трениями, происходящими в опорах радиальных и осевых подшипников, в механическом торцевом уплотнении, а также потери на трение о рабочую жидкость возникающие при вращении рабочего колеса и вала насоса. Механические потери также очень сильно зависят от конструкции, качества изготовления и типоразмера насоса. Механический KПД насосов находится в пределах ηм= 0,95…0,98.

Р – мощность, на валу насоса;

Ртр – потери мощности на преодоление сопротивления трения.

Объемные потери в основном возникают за счет перетекания жидкости из области с высоким давлением в область низкого давления, через зазоры между рабочим колесом и диффузором или неподвижными деталями корпуса насоса. Например, в центробежном насосе часть жидкости из спирального отвода в обход рабочего колеса перетекает обратно во всасывающий патрубок, при этом она не поступит в напорный патрубок, хотя на нее уже была затрачена энергия. КПД ηо у современных центробежных насосов составляет от 0,96 до 0,98.

Читайте также:  Чем полезен мед на ночь

Qк – расход жидкости проходящий через рабочее колесо насоса.

Произведение ηгмо и определяет общий КПД насоса. Изменение величины любого из сомножителей приводит к изменению величины и общего КПД насоса. Эта зависимость задается функцией от подачи в характеристике насоса, а на графиках изображается в виде кривой η=f(Q). Полезную мощность насоса Р (кВт) можно также определяют как произведение весовой подачи (Q) на напор (H) по формуле:

pg – удельный вес жидкости (Н/м 3 );

Q – объемная подача насоса (м/с);

На (Рис. 3) находятся рабочие характеристики серии насосов, а также зависимость характеристики MPSH и характеристики КПД от расхода.

Характеристика насоса и КПД

Красным прямоугольником выделен участок кривой с самым оптимальным КПД. В каталогах заводов производителей насосного оборудования указывается рабочая характеристика насоса, характеристика подпора NPSH (net positive suction head -кавитационный запас) и характеристика коэффициента полезного действия. КПД насосов очень сильно зависит от режима их работы и конструктивных особенностей, типов, размеров и может изменяться в очень широком диапазоне. При работе в оптимальном режиме, КПД мощных центробежных нефтяных насосов может достигать 92%, а малых насосов около 60% – 75%. КПД насосов с «мокрым» ротором колеблется от 5% до 54 % у высокоэффективных циркуляционных насосов. Мощность и КПД насосов в конечном итоге определяют затраты на электроэнергию в процессе их эксплуатации. Чем тщательнее подобрано насосное оборудование под заданные параметры тем оно эффективнее и, следовательно, менее затратно.

источник

Одним из основных параметров любого агрегата или механизма, на который обращается особое внимание, является коэффициент полезного действия (КПД). Он представляет собой отношение полезной мощности оборудования к потребляемой.

Электродвигатель насоса приводит во вращение вал насоса, на котором установлено рабочее колесо. Результатом работы насоса является преобразование электрической энергии в гидравлическую. Но электрическая энергия не преобразуется в полезную мощность в полном объеме, что обусловлено возникающими в насосе потерями на трение в виде тепловой энергии. Поэтому КПД насоса всегда будет меньше 100% (или 1).

Мощность на валу насоса P2 – это мощность, необходимая двигателю для осуществления вращения рабочего колеса. Полезная мощность насоса P4 определяется с помощью производительности Q и напора H.

P4 = Q•ρ•g•H ,
где ρ – плотность воды;
g – ускорение свободного падения.

P2 = P4 + Pvp,
где Pvp – потери мощности в насосе.

Потери мощности в насосе складываются из двух составляющих:
гидравлические;
— механические.

Гидравлические потери в насосе состоят из потерь на преодоление гидравлических сопротивлений в рабочем колесе и корпусе при движении потока жидкости от всасывающего патрубка к напорному. Они зависят от конструктивных особенностей насосов, размеров их проточной части, качества обработки (шероховатости) стенок и поверхностей насоса. Гидравлические потери прямо пропорциональны квадрату скорости перекачиваемой жидкости.

Механические потери обусловлены трением, имеющим место в опорах радиальных и осевых подшипников, а также в торцевом уплотнении. Также данные потери обусловлены трением рабочего колеса и ротора насоса о перекачиваемую жидкость. Механические потери также зависят от конструкции, качества изготовления и типоразмера насоса.

Распределение мощностей на насосе

КПД насоса оценивает его энергетическую эффективность. Он определяется, как отношение полезной мощности к потребляемой.

Следовательно, путем к повышению КПД насоса является уменьшение потерь — гидродинамическое совершенствование проточной части, качественная обработка стенок насоса, качество торцевых уплотнений и подшипников.

КПД насоса рассчитывается по следующей формуле:

где ŋp – КПД насоса;
Q [м3/ч] – производительность насоса;
H [м] – напор;
P2 [кВт] – мощность насоса;
367 – постоянный коэффициент;
ρ [кг/м3] – плотность воды.

Так насос постоянно приводится в действие приводом двигателя, и этот двигатель забирает мощность P1 из сети, чтобы в месте подсоединения насосной части передать мощность валу P2, то КПД двигателя рассчитывается следующим образом:

Тогда общий КПД насоса ŋtot определяется произведением КПД электродвигателя и КПД насоса:

Общий КПД насоса

КПД насосов различных типов и размеров могут варьироваться в очень широком диапазоне. Для насосов с мокрым ротором КПД ŋtot составляет 5–54%, причем последнее значение характерно для высокоэффективных насосов. Насосы с сухим ротором имеют больший КПД ŋtot порядка 30–80%.

Зависимость КПД насоса от подачи. Максимальный КПД достигается в средней трети характеристики насоса

Даже в пределах характеристики насоса H(Q) текущий КПД в тот или иной момент меняется от нуля до максимального значения.

Если насос работает при полностью закрытом клапане, то им создается максимальное давление, но перемещения воды нет, поэтому КПД насоса в этот момент равен нулю. Аналогичная ситуация возникает и при открытой трубе. Несмотря на большое количество перекачиваемой воды, давление не создается, поэтому КПД насоса также равен нулю.

Максимальный общий КПД циркуляционного насоса системы отопления достигается в средней части характеристики насоса H(Q). В каталогах изготовителей насосов графики характеристики насосов и зависимости КПД от подачи указаны отдельно для каждого конкретного насоса.

Насос никогда не работает при постоянной производительности. Поэтому при первичном расчете системы отопления необходимо подобрать такой насос, чтобы его рабочая точка находилась в средней трети характеристики насоса большую часть отопительного сезона. Это будет являться гарантией работы насоса при оптимальном КПД.

КПД насоса зависит от его конструкции и мощности двигателя. Далее указаны значения КПД в зависимости от мощности выбранного мотора и конструкции насоса (с мокрым или сухим ротором).

источник

Мощность — работа в единицу времени — применительно к насосам можно определять по нескольким соотношениям в зависимости от принятых единиц измерения подачи, давления или напора. Полезной мощностью называют мощность, сообщаемую насосом подаваемой жидкости. Если подача Q выражена в м 3 /с, а давление насоса — в Па, то полезная мощность Nп, кВт, составит

При массовой подаче QM выраженной в кг/с,

Если напор насоса выражен в метрах столба перекачиваемой жидкости, то

Для воды при температуре 20 °С и q = 9,81 м/с 2

Если же подача воды выражена в м 3 /ч, а напор — в м вод. ст., то

Если мощность необходимо выразить в л. с, то ее вычисляют по следующей формуле:

Мощность насоса, т. е. мощность, потребляемая насосом,

где η — КПД насоса.
Из формулы (2.46) видно, что КПД насоса представляет собой отношение полезной мощности к мощности насоса

Коэффициент полезного действия насоса учитывает гидравлические, объемные и механические потери, возникающие при передаче энергии перекачиваемой жидкости. Гидравлическими потерями называют потери энергии на преодоление гидравлических сопротивлений при движении жидкости от входа в насос до выхода из него, т. е. во всасывающем аппарате, рабочем колесе и нагнетательном патрубке. Гидравлические потери оценивают гидравлическим КПД насоса:

где Nn — полезная мощность насоса; Nг — мощность, затраченная на преодоление гидравлических сопротивлений в насосе.

Объемные потери возникают вследствие перетекания части жид кости из области высокого давления в область пониженного давления (во всасывающую часть насоса) и вследствие утечек жидкости через сальники. Объемные потери оценивают объемным КПД насоса

где N — мощность, потерянная в результате перетекания жидкости и утечек.

где Nм— мощность, затраченная на преодоление механических потерь.
Механические потери слагаются из потерь на трение в подшип-никах, сальниках и разгрузочных дисках рабочего колеса, а также из потерь на трение наружной поверхности рабочего колеса о жидкость. Механические потери оценивают механическим КПД насоса.
Коэффициент полезного действия насоса равен произведению гидравлического, объемного и механического коэффициентов полезного действия

и характеризует совершенство конструкции, а также качество изготовления насоса. КПД крупных насосов доходит до 0,92, а КПД малых насосов — до 0,6 — 0,7 и менее. Мощность двигателя, приводящего в движение насос, всегда больше мощности насоса. Если вал насоса соединен с валом двигателя с помощью муфты, то установочную мощность двигателя определяют по формуле

где kдв — коэффициент запаса мощность двигателя.
В зависимости от мощности двигателя N, кВт, и условий его работы следует принимать приведенные ниже коэффициенты запаса мощности:

Если вал насоса соединен с валом двигателя редуктором или ременной передачей, то мощность двигателя определяют по выражению

где ηдв — КПД привода (или редуктора).
Коэффициент полезного действия насосного агрегата, т. е. насоса, соединенного с двигателем, равен

где Na — мощность насосного агрегата; ηдв — КПД двигателя.

источник

Подача — Q [м³/ч] — объём воды, подаваемый насосом в единицу времени. Подача насоса определяется рабочей точкой на его характеристике и кроме конструктивных особенностей зависит от частоты вращения рабочего колеса и гидравлической характеристики сети.

Оптимальная подача насоса достигается при максимальном значении коэффициента полезного действия. Фактическую подачу насоса можно определить по напорно-расходной характеристике зная создаваемый напор.

Напор — H [м.вод.ст] — разница давлений между входным и выходным патрубком насоса. Напор насоса слагается из высот, которые необходимо преодолеть жидкости.

H = Hz + (Pв — Pн)/(ρg) + dh + (С²в — С²н)/(2g)

  • Hz — геометрическая высота подъёма, м равная разнице уровней поверхности жидкости в приёмном (верхнем) и подающем (нижнем) резервуарах.
  • (Pв — Pн)/(ρg) — высота, м, соответствующая разности давлений, Па в верхнем и нижнем резервуарах;
  • dh – сумма гидравлических потерь (на трение и в местных сопротивлениях) во всасывающем и напорном трубопроводах, м;
  • (С²в — С²н)/(2g) — высота, м, соответствующая разности кинетической энергии жидкости при скорости движения Св м/с на выходе из напорного трубопровода в верхний резервуар и при скорости Сн, м/c, на входе во всасывающий трубопровод из нижнего резервуара;
  • ρ — плотность жидкости
  • g — ускорение свободного падения, равное 9,8 м/с²

Если давление приложенное к поверхности жидкости в обоих резервуарах будет одинаковым, например, при открытых резервуарах, и жидкость в обоих резервуарах находится в состоянии покоя, тогда выражение определяющее напор насоса можно упростить:

Из выше приведенных выражений видно, что напор насоса поднимающего воду определяется, высотой подъёма и потерями напора в трубопроводах. В замкнутом циркуляционном кольце, (например системы отопления), напор насоса определяется суммой потерь напора на всех элементах кольца и не зависит от высоты системы и места установки насоса в ней.

Напорно-расходная характеристика — графическое отображение зависимости напора насоса от его подачи в координатах Q [м³/ч] / H [м.вод.ст]. Напорно-расходная характеристика, является основной характеристикой используемой для выбора насосов и приводится в каталогах производителей в виде графиков.

Рабочая точка насоса — точка на пересечении напорно-расходной характеристики с горизонтальной линией, проведённой с точки на оси ординат, которая соответствует развиваемому напору. Чтобы определить фактическую подачу насоса из рабочей точки опускают перпендикуляр на ось подачи (абсцисс).

Таким образом, подачу насоса определяет развиваемый им напор, который в повысительных насосах определяется высотой подъёма и потерями в трубопроводах, а в циркуляционных насосах — гидравлической характеристикой циркуляционного кольца. Так как, в циркуляционном кольце изменение потерь напора пропорционально квадрату изменения расхода проходящего через него, гидравлическая характеристика сети в координатах Q [м³/ч] / H [м.вод.ст], имеет вид параболы.

Высота всасывания — Нвс [м] — при условии забора воды из нижнего резервуара, в котором на зеркало воды действует атмосферное давление, высота всасывания насоса соответствует разнице уровней в метрах, между осью рабочего колеса и уровнем жидкости в нижнем резервуаре, за вычетом потерь напора в трубопроводе, который соединяет нижний резервуар и насос.

Подъём воды с нижнего резервуара происходит за счёт разницы давлений, при этом в рабочем колесе насоса создаётся разрежение, а на воду действует атмосферное давление. Так как атмосферному давлению соответствует столб воды высотою в 10,3 метра, а насос не может создать в рабочем колесе абсолютный вакуум — высота всасывания насоса не может превышать 8 метров.

Читайте также:  Полезнее жарить на сливочном масле или на растительном

Кавитационный запас — NPSH [м.вод.ст] — минимальное давление во всасывающем патрубке насоса обеспечивающее безкавитационную работу. Значение кавитационного запаса определяется опытным путём производителями насосов и приводится в виде графика в зависимости от подачи насоса.

Полезная мощность насоса — Nu [Вт] — соответствует энергии передаваемой жидкости в единицу времени.

Мощность на валу насоса — Nw [Вт] — механическая мощность, которая передаётся на вал насоса. Механическая мощность больше полезной, на величину гидравлических потерь и потерь на трение в рабочем колесе.

КПД насоса — η [%] — коэффициент полезного действия характеризующий степень совершенства центробежного насоса и определяется как отношение полезной мощности к мощности на валу.

Номинальный диаметр — DN — численное обозначение внутреннего диаметра присоединительных патрубков насоса общее для всех трубопроводных элементов. Номинальный диаметр насоса не имеет размерности, но его значение приблизительно равно внутреннему диаметру присоединяемого трубопровода.

Ряд условных проходов DN (Ду) трубопроводных элементов регламентирован ГОСТ 28338-89 «Проходы условные (размеры номинальные)». Альтернативным обозначением номинального диаметра DN, распространённым в странах постсоветского пространства, был условный диаметр.

Номинальное давление — PN [бар] — наибольшее избыточное давление воды с температурой в 20°C, при котором допускается длительная работа насоса.

Альтернативным обозначением номинального давления, распространённым в странах постсоветского пространства, было условное давление. Ряд номинальных давлений PN (Ру) трубопроводных элементов регламентирован ГОСТ 26349-84 «Давления номинальные (условные)».

источник

Министерство образования и науки

Республики Казахстан Северо-Казахстанский Государственный

Учебно методическое пособие

Тема «Технические показатели насосов»

по дисциплине «Машины и оборудование газонефтепроводов»

предназначено для студентов очной

Мотрохин А.В.-ст. преподаватель

Рассмотрено на заседании кафедры Утверждено методическим бюро ТСФ

протокол _________________ 200 г. протокол № ____ ________________ 200 г.

И.о. зав. кафедрой _________________ Р. Имамбаева Председатель методического бюро

ОБЩИЕ СВЕДЕНИЯ О ТЕХНИЧЕСКИХ ПОКАЗАТЕЛЯХ НАСОСОВ

К техническим показателям насосов относятся подача, давление (напор), мощность и коэффициент полезного действия (к.п.д.).

Действительной подачей Qд насоса называется объем жидкости V, поступающий в нагнетательный трубопровод в единицу времени.

, (1)

где t — время замера объема V.

Действительная подача определяется объемным способом или с помощью различных расходомеров (турбинных, дроссельных, ультразвуковых и т.д.), установленных в нагнетательной линии.

Напором насоса Н называется приращение гидравлической энергии, получаемое единицей веса жидкости, проходящей через насос, т.е. разность удельных энергий жидкости в нагнетательном и всасывающем патрубках насоса.

, (2)

где Р2 и Р1 — абсолютные давления на выходе и входе насоса;

V2 и V1 — средняя скорость на выходе и входе насоса;

Z2 и Z1 — отметки установки приборов измерения давления на выходе и входе насоса.

Под давлением насоса в общем случае понимается величина, определяемая зависимостью:

, (3)

Если пренебречь разностью скоростных напоров (V 2 2-V 2 1) и отметок (Z2-Z1), то получим

, (4)

Потребляемая мощность — это мощность, подведенная к приводному валу насоса.

Коэффициентом полезного действия насоса называется отношение полезной мощности к потребляемой:

, (5)

Полезной мощностью насоса Nn называется приращение энергии, получаемое жидкостью, проходящей через насос в единицу времени:

, (6)

Кроме указанных основных показателей работы насоса существуют теоретические (расчетные) показатели.

Средней теоретической подачей QT поршневого насоса называется суммарное изменение объема рабочих камер насоса (FэфSz) в единицу времени.

, (7)

где Fэф — эффективная площадь поршня;

n — число двойных ходов поршня;

Эффективная площадь поршня зависит от кратности действия насоса и может быть равна:

для насоса простого действия (одностороннего) площади поршня F

, (8)

для насоса двойного действия (двухстороннего) с учетом площади штока f

, (9)

где D и d — диаметры поршня и штока соответственно.

Теоретическая подача всегда больше действительной на величину потерь подачи :

, (10)

где — объемные потери, которые возникают в результате утечек через уплотнения штока и перетекания жидкости под действием перепада давления из рабочей полости в нерабочую через уплотнения поршня и клапанов, а также потерь , обусловленных неполным заполнением рабочих камер жидкостью при движении её через зону всасывания вследствие кавитационных процессов, выделения из жидкости или подсоса воздуха через неплотности всасывающей линии, а при высоких давлениях и вследствие сжимаемости жидкости, наличия мертвого пространства и деформации стенок цилиндров.

Указанные объемные потери в насосе характеризуются коэффициентом подачи а.

Коэффициентом подачи а называется отношение действительной подачи к теоретической:

, (11)

На коэффициент подачи а существенное влияние оказывает вязкость жидкости. При снижении температуры, а следовательно, при увеличении вязкости уменьшается и а повышается, однако это справедливо до определенного предела, так как начинают возрастать гидравлические потери на всасывании, что может привести к снижению давления на входе до давления насыщенных паров и увеличению , следовательно, к снижению а.

Коэффициент подачи а можно представить в виде

, (12)

где — коэффициент, учитывающий утечки;

— коэффициент, учитывающий наполнение цилиндров жидкостью.

Потери связаны с потерей энергии, т.к. вместе с утекающей жидкостью теряется мощность, поэтому коэффициент утечек равен объемному к.п.д. насоса .

Потери не связаны с затратами энергии, учитываются только коэффициентом наполнения .

источник

Подача (производительность) — это количество жидкости, перемещаемое насосом за единицу времени.

Подача может быть выражена по-разному:
Q — объемная подача, [м 3 /c];
G — массовая подача, [кг/c].

Между массовой и объемной подачей есть взаимосвязь:

(1)

где r — плотность перекачиваемой жидкости, [кг/м 3 ].

Подача насоса зависит от его конструкции, скорости вращения рабочего колеса, вязкости жидкости и характеристики трубопровода, по которому насос перемещает жидкость.

Измерить подачу насоса можно различными приспособлениями:

  • ротаметром,
  • диафрагмой с подключенным дифманометром.
    Для измерения подачи используются также автоматические приборы, передающие информацию о подаче на ЭВМ в форме электрического сигнала.

    Одной из важнейших задач, которые приходится решать при эксплуатации центробежного насоса, является регулирование его подачи. Наибольшее распространение на практике получили следующие способы регулирования подачи:

  • задвижкой на напорном трубопроводе
  • байпасированием
  • изменением числа оборотов вала рабочего колеса

    Напор насоса — это энергия, которую получает объем жидкости весом в 1 Ньютон при прохождении через насос.

    Обозначается напор H и измеряется в метрах столба рабочей (перекачиваемой) жидкости, [м]. Напор можно рассматривать и с геометрической точки зрения как высоту, на которую может быть поднят 1 Ньютон жидкости за счет энергии, вырабатываемой насосом.

    Зависимость напора центробежного насоса от его объемной подачи изображают в виде графика, который называется напорной характеристикой насоса.

    Напорная характеристика зависит от конструкции насоса (модели), скорости вращения рабочего колеса и вязкости перекачиваемой жидкости. Напорная характеристика насоса дает представление о возможностях данного насоса.

    Для отображения этого элемента необходимо установить плагин AdobeSVGViewer3

    Напорные характеристики насосов представляют в справочниках и каталогах насосного оборудования.
    Хочется заострить внимание на том, что напорная характеристика насоса не зависит от плотности перекачиваемой жидкости, но зависит от вязкости жидкости. Чем больше вязкость жидкости, тем ниже располагается напорная характеристика. В справочниках приводятся напорные характеристики насосов для перекачки воды, поэтому, если необходимо перекачивать жидкость, имеющую вязкость, сильно отличающуюся от вязкости воды, то характеристику, взятую из справочника, нужно пересчитать (перестроить) по определенной методике. Методика, по которой выполняется пересчет напорной характеристики на другую вязкость приведена здесь.

    Напорную характеристику можно получить только при испытании реального насоса. Обычно испытывают насос при какой-либо скорости вращения рабочего колеса, перекачивая воду, и находят напор по показаниям измерительных приборов (формула 2 или 3), при различных подачах данного насоса.

    Формулы напора

    Для лучшего понимания рекомендуется сначала обратиться к разделу Трубопроводная сеть
    Определение напора на работающей насосной установке осуществляют по показаниям манометра и вакууметра:

    (2)

    где Pм – показания манометра, [Па]; Pв – показания вакууметра, [Па]; g=9,8 — ускорение свободного падения [м/с 2 ]; z — расстояние по вертикали между точками подключения манометра и вакууметра, [м]; dвс — диаметр всасывающего трубопровода, [м]; dн — диаметр напорного трубопровода, [м]; Q — подача насоса, [м 3 /с], измеренная каким-либо методом (см пункт «подача»).
    Если диаметры всасывающего и напорного трубопроводов одинаковы, а z намного меньше, чем слагаемое , то формула упрощается:

    (3)

    Если для нахождения напора используется формула (2) или (3), то говорят, что напор определяется опытным путем. Формулы (2) и (3) пригодны для определения напора, если перед насосом получается разрежение. Потренероваться в определении напора можно зайдя по этой ссылке. Если же перед насосом действует избыточное давление, то для определения напора нужно использовать методику, описание которой приводится в этой ссылке.
    Следующая формула используется, когда проектируется насосная установка и известны ее параметры.

    (4)

    где Hг – геометрический напор, [м]; P1, P2 – давления в расходном и приемном резервуарах, [Па]; λвс, λн — коэффициенты трения во всасывающем и напорном трубопроводах; lвс, lн — длины всасывающего и напорного трубопроводов, [м]; ξвс, ξн – коэффициенты местных сопротивлений всасывающего и напорного трубопроводов.
    Для нахождения напора по этой формуле, нужно задаться численным значением подачи жидкости в данной насосной установке.

    Напор, найденный по формуле (4) называют потребным напором, то есть напором, который требуется создать с помощью насоса для обеспечения заданной подачи жидкости насосной установкой.

    Вообще, формула (4) является математическим выражением напорной харатеристики трубопроводной сети. Смысл этой формулы рассмотрен в разделе Напорная характеристика сети.

    Полезная мощность – это энергия, отдаваемая жидкости за единицу времени при работе насоса.

    Полезная мощность обозначается Nп, измеряется в СИ в Ваттах [Вт].
    Полезную мощность можно определить по формуле:

    Общий к.п.д. (коэффициент полезного действия) насоса — это отношение полезной мощности к мощности на валу.

    (6)

    Общий к.п.д. выражает, какая доля потребляемой насосом энергии преобразуется в полезную энергию. Полезная энергия — это энергия, отдаваемая жидкости. Потребляемая энергия — это энергия, затрачиваемая двигателем при вращении рабочего колеса насоса. Полезная энергия меньше, чем потребляемая, так как в процессе преобразования энергии, осуществляемого центробежным насосом, часть энергии неизбежно теряется. К.п.д. насоса оценивает его энергетическое совершенство. Чем больше к.п.д. насоса, тем эффективней он использует потребляемую энергию.

    Зависимость общего к.п.д. насоса от подачи определяется конструкцией насоса, скоростью вращения его рабочего колеса и вязкостью перекачиваемой жидкости.

    Мощность на валу – это энергия, потребляемая насосом за единицу времени.

    Другими словами, мощность на валу — это энергия, передаваемая валу рабочего колеса от электродвигателя.
    Обозначается мощность на валу Nв, измеряется в СИ в Ваттах — [Вт].
    Мощность на валу и полезная мощность связаны соотношением:

    Мощность на валу является важным параметром, дающим представление об энергопотреблении работающего насоса.

    Характер зависимости мощности на валу от подачи определяется не только конструкцией насоса и скоростью вращения его рабочего колеса, но и плотностью перекачиваемой жидкости, причем чем больше плотность, тем больше мощность на валу при прочих одинаковых условиях

    Типичная для центробежного насоса зависимость мощности на валу от подачи представлена на рисунке. В общем, при увеличении подачи потребляемая мощность растет.

    Подобные графические характеристики представлены в каталогах и справочниках насосного оборудования. Однако следует иметь в виду, что эти характеристики относятся к перекачке воды, поэтому для определения действительной мощности, потребляемой насосом при перекачке жидкости, плотность которой отлична от плотности воды, нужно выполнить пересчет:

    (9)

    где — мощность, потребляемая при перекачке жидкости; — мощность для перекачки воды, определенная по графическим характеристикам; — плотность воды; — плотность перекачиваемой жидкости.

    Допустимая высота всасывания

    Прежде чем говорить о допустимой высоте всасывания, необходимо сначала разобраться, что называют высотой всасывания. Следующий рисунок поясняет смысл этого термина.

    Для отображения этого элемента необходимо установить плагин AdobeSVGViewer3 с сайта http://www.adobe.com/svg/viewer/install/

    Высотой всасывания называют расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса.

    Допустимая высота всасывания — это максимальное расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса, при котором не возникает кавитации.

    источник

  • Источники:
    • http://studopedia.ru/2_12349_moshchnost-i-koeffitsient-poleznogo-deystviya-nasosa.html
    • http://studopedia.su/7_16126_moshchnost-i-koeffitsient-poleznogo-deystviya-nasosa.html
    • http://helpiks.org/7-74560.html
    • http://nasos-pump.ru/moshhnost-i-kpd-centrobezhnyx-nasosov/
    • http://teplovichek.com/moschnost-kpd-nasosa/
    • http://www.nasosinfo.ru/node/11
    • http://www.ktto.com.ua/kharakteristiki/nil
    • http://vunivere.ru/work8426
    • http://www.isuct.ru/dept/chemkiber/piaht/edu/index.php?page=parametors.inc