Меню Рубрики

В каких областях полезна физика

Физика в медицине, как и в любой другой науке, играет важную роль. В этой статье мы рассмотрим множество примеров того, как эта наука влияет на здоровье и жизнь людей. Сразу же договоримся, что вдаваться в сложные научно-технические подробности не будем, чтобы не вводить никого в заблуждение. Приступим к рассмотрению примеров.

Медицина не обходится без трех важных параметров, которые являются основой для оценки здоровья человека: температура, давление, а нередко еще и пульс.

Как известно, температуру измеряют термометром (в простонародии называют «градусником»). А какие показатели должны быть? Нормой для человека является Т=36,6 0 С. Несомненно, допустимо, например, 36,3 0 С и 36,8 0 С. Но если температура тела выше 36,9 0 С, то можно смело говорить, что человек нездоров.

Какова здесь роль физики в медицине? Кто учился с 7-го по 11-й (или хотя бы по 9-й) класс, те прекрасно знают, что температура – это физическая величина. Измеряется в нескольких единицах. Но в России принято измерять в Цельсиях. Термометры бывают ртутные, электронные (со специальным датчиком).

Давление также является важным параметром, но существуют нюансы. Не для всех давление 120 на 80 полезно. У кого-то рабочее давление 110 на 70, что тоже является нормой. Измеряется при помощи тонометра (манжета, груша для накачки воздуха, манометр). Есть и электронные, компьютерные тонометры. Как правило, современная техника одновременно измеряет давление и пульс. Что касается единиц измерения давления, то в физике их существует несколько. В медицине давление измеряется в миллиметрах ртутного столба (мм рт.ст.). Пульс же измерить проще самостоятельно и надежнее, так как нужно посчитать, сколько ударов в минуту осуществилось.

Использование физики в медицине – это необходимость в современном мире. Ни одно, даже самое бедное медицинское учреждение не обходится без диагностического оборудования. Везде есть самые востребованные из них:

Не менее востребованы аппараты УЗИ, гастроскопы, офтальмологическое оборудование.

Разумеется, чтобы создать те или другие приборы, нужно объединиться вместе многим ученым. Не один год уходит на то, чтобы создать подходящее оборудование. Обязательно техника должна взаимодействовать с живым организмом, не причиняя вреда. К сожалению, далеко не каждый прибор на это способен, поэтому медики рекомендуют строго соблюдать дозу, время проведения обследования или терапии.

В школьную программу физики входит раздел «Колебания и волны» — тема «Звук». Существует его три вида: инфразвук (от 16 до 20 Герц), звук (от 21 до 19 999 Герц), ультразвук (от 20 000 Герц и выше). Что такое «герц»? Это частота колебаний, происходящих всего за одну секунду. Речь идет о звуковой волне, которая проникает из одной среды в другую с определенной частотой. Роль физики в развитии медицины в данном случае следующая: ученые биофизики, конструкторы изобрели и продолжают изобретать мощные аппараты для исследования внутренних органов.

На сегодняшний день УЗИ-диагностика является одной из самых быстрых, безболезненных и безопасных способов исследования. Но есть недостаток: обследовать можно только внутренние органы брюшной полости, малого таза, почек, щитовидной железы. Узнать, есть ли перелом костей или что происходит с больным глазом или зубом, не получится.

Еще одно чудо современной медицинской техники – это магнитно-резонансная томография (МРТ). Подобное обследование дает более четкую картину того, что происходит в конкретном органе. Можно сказать сразу, что МРТ в своем роде является заменой УЗИ. Почему? Как мы говорили выше, ультразвуком можно проверить только органы брюшной полости, малого таза и щитовидки. Состояние костей, сосудов проверить не получится. Это может сделать МРТ. Альтернативой этих двух методов (УЗИ и МРТ) может стать компьютерная томография (КТ).

Нужно учитывать, что УЗИ и КТ требуют применения дополнительных препаратов, чтобы обеспечить качественное обследование.

Физиотерапия играет важную роль в здоровье людей: прогревание, ультрафиолетовое излучение, электрофорез и так далее.

Какой еще вклад внесла физика? В медицине существует огромное число видов оборудования, приборов не только для поликлиник и больниц. В настоящее время некоторые заводы изготавливают приборы для домашнего пользования. Например, ингаляторы различного вида для проведения терапии органов дыхания. Сюда же можно отнести и ультразвуковые, инфракрасные, электромагнитные приборы.

Неотложная медицинская помощь при тяжелых состояниях имеет смысл там, где есть профессиональные реаниматоры. Если у человека внезапно остановилось дыхание, прекратилось сердцебиение, то, как правило, его стараются вернуть к жизни. Проводить непрямой массаж сердца не всегда удобно, но еще и опасно.

Поможет медикам такой прибор, который имеет название «дефибриллятор». Вот еще одно применение физики в медицине. Создатели прибора рассчитывали, какие токи должны проходить через человеческое сердце, чтобы запустить его. Немаловажными факторами являются и материал, правила безопасного применения. Аппараты искусственного вентилирования легких (ИВЛ) — тоже заслуга физики.

Каждый второй человек в современном мире носит очки или контактные линзы. Чтобы подобрать правильно нужные диоптрии, нужно потратить много времени. Оптика применяется в микроскопах.

Значение физики в медицине очень велико даже, казалось бы, в малом. Оптика начала применяться еще несколько столетий назад. Это очень сложная наука. Как известно, существуют собирающие и рассеивающие линзы. А об их параметрах можно судить долго. Сможет ли обычный человек отличить «-1,0» диоптрию от, например, «-1,5»? Для больного близорукостью очень важно подобрать правильные очки.

Лазерная коррекция зрения, да и в целом лазерная хирургия, является очень сложной и серьезной задачей. Ученые обязаны проводить максимально точные расчеты, чтобы получить положительный результат, а не трагический исход.

Очень важно для больных онкологическими заболеваниями подобрать правильное лечение. Не обходит стороной практически ни одного больного химиотерапия. Несомненно, что здесь больше требуется знаний химии. Но тем не менее врач должен знать, нужно ли облучать больного.

Атомная и радиологическая физика в медицине для пациентов с онкологией может стать путем спасения жизни, если не только правильно применять на практике, но и создавать очень точное оборудование и приборы.

Многих людей заботит личное здоровье, а также здоровье близких. Современный мир изобилует различной полезной техникой. В продаже имеются, например, измерители нитратов в овощах и фруктах, дозиметры, электронные глюкометры (приборы для измерения сахара в крови), электронные тонометры, домашние метеостанции и так далее. Конечно, некоторые из перечисленных приборов не относятся к медицинским, но они помогают людям поддерживать здоровье.

Помочь человеку разобраться в различных показаниях приборов помогут не только инструкции, но и школьная физика. В медицине она имеет те же законы, единицы измерения, что и в других сферах жизни.

Если в школе, техникуме или институте попросят написать на тему «Роль физики в медицине» реферат (доклад), то есть на этот счет несколько советов:

  • написать краткое вступление по теме;
  • разработать план написания текста (важно разбить все на логические подзаголовки, абзацы);
  • пусть источников литературы будет как можно больше.

Лучше всего писать только о том, что вы понимаете. Нежелательно вставлять в реферат/доклад то, что вам непонятно, например, очень сложное научное описание того, как действует УЗИ или аппарат ЭКГ.

Если реферат/доклад задали по физике, то берите только ту тему, которую вы уже изучили и хорошо понимаете. Например, оптика. Если плохо разбираетесь в радиофизике, то лучше не пишите о приборах для лечения онкобольных.

Пусть тема будет интересной в первую очередь для вас самих, а также понятной. Ведь дополнительные вопросы может задать не только педагог, но и одноклассники/однокурсники.

источник

Сфера распространения физики неимоверно обширна, ведь физические процессы:

  • проходят внутри человека: передача импульсов в коре головного мозга, наполнение и отток крови в камерах сердца;
  • окружают людей повсюду: свет светил, прилив и отлив морей, газообменные процессы воздуха;
  • в современных приборах и устройствах их не перечесть, но, тем не менее, необходимость в разработке новых или существенном улучшении уже имеющихся технологий не снижается.

Чтобы новое слово в современных технологиях принадлежало вам, можно выбрать интересную профессию, связанную с физикой:

Специалист, который найдёт применение себе там, где необходимо обслуживание механических процессов в системах, подчинённых физическим законам, например, на предприятиях-производителях современной техники и оборудования, здесь высоко востребована научная и экспериментальная работа. А каждое оригинальное изобретение инженера-физика, работающего в научно-исследовательском институте, может быть запатентовано и реализовано предприятию, готовому заплатить за патент.

Основная цель его работы – практические разработки в сфере применения физических знаний. Согласно выбранной специализации он может заниматься:

  • исследованием гидродинамических и тепломассообменных процессов, использованием геотермального тепла (теплофизика)
  • проектированием устройств, экспериментальных установок и приборов для физических исследований и измерений, например, для фиксации неионизирующих и ионизирующих излучений (ядерная физика)
  • разработкой и совершенствованием технологических процессов, например, создания новых композиционных материалов (углеродных, металлических, полимерных)

Углублён в разработку и совершенствование сферы автомобилестроения и автоспорта: двигатель высокой мощности, надёжное сцепление, минимально сопротивляющаяся ветру форма гоночного авто – плоды его труда.

Несомненно, обладатель высокооплачиваемой работы — предприятия нефте- и газодобычи постоянно нуждаются в новом оборудовании, методах и схемах оптимизирующих её работу, потому щедро расплачиваются с теми, кому удаётся усовершенствовать их труд.

Может быть вовлечён в теоретические проблемы программирования, обработку цифровых данных и решение задач программного и технического обеспечения компьютерных процессов. Компьютерным программированием, системным анализом, обработкой электронных данных и построением информационных систем занимаются отдельные специалисты области компьютерных наук.

Обязательно должен знать физику и понимать суть физических процессов для конструирования космических аппаратов, ракет, орбитальных станций, спутников, систем противоракетной обороны. Инженеры аэрокосмической отрасли проводят разработку, изготовление и испытание образцов ракетно-космической техники.

Необходим медицинским учреждениям, лечебно-диагностическим центрам, в которых проводятся томографические и радионуклидные диагностические исследования. В их компетенцию входит обслуживание гамма-камер, ультразвуковых сканеров и постоянно обновляющихся моделей цифровой медицинской техники.

Востребованы медицинской сферой теоретические разработки в области радио- и биохимической физики.

Применяет научные и технические данные для решения проблем обогащения ядерной энергии и эффективной утилизации радиоактивных отходов. Физики-ядерщики с физиками-атомщиками изучают строение атомов и ядер, часто результатами их трудов становятся революционные изобретения и открытия, например, адронный коллайдер или обнаружение бозона Хиггса.

В поле деятельности инженеров-ядерщиков входит налаживание взаимодействия и поддержка таких систем и компонентов, как ядерное оружие, ядерные электростанции, ядерные реакторы. Они могут работать в сферах медицины с приборами ионизирующей радиации, в сферах экологии и информационной технологии, в области разработки различных материалов: новые поколения супериоников, полимеров, полупроводников и биосистем.

Работает над разработкой и созданием целевого продукта из ресурсов уже имеющегося материального производства, например, инженер-конструктор стальных конструкций, инженер-конструктор мебельного производства. Под созданием целевого продукта понимается объединение ресурсов: сварка, сборка, монтаж, бетонирование и так далее.

Он может быть занят разработкой конструкций, инструментов, механизмов, электросхем. Более подробную информацию вы найдете в описании профессии конструктора.

Занят организацией производственных процессов или разработкой определённой технологии на производственных предприятиях. Он сам выбирает набор оборудования, на котором осуществляет технологический процесс, оптимальный режим работы, методы оценки результатов и контроля качества, ведёт технологическую документацию. Технолог возглавляет рационализаторскую и изобретательскую работу предприятия по освоению производственных мощностей.

Вы можете выбирать именно ту специализацию, которая вам нравится без опасения остаться невостребованным. На рынке инженерных профессий наблюдается так называемый «конкурс наоборот», это когда 3-4 рабочих места ожидают 1 специалиста!

Безработица вам не грозит, а любимая высокооплачиваемая работа – залог финансового благополучия и одна из составляющих человеческого счастья.

источник

  • Участник:Федаева Анна Владимировна
  • Руководитель:Гусарова Ирина Викторовна

Цели и задачи данной работы:

1)Выяснить, как физика влияет на жизнь человека и сможет ли современный человек прожить без её применения;

2) Показать необходимость физических знаний для повседневной жизни и познания самого себя;

3) Проанализировать, насколько человек интересуется физикой в 21 веке.

Человека, как высшую ценность нашей цивилизации, изучает ряд научных дисциплин: биология, антропология, психология и другие. Однако создание целостного представления о феномене человека невозможно без физики. Физика является лидером современного естествознания и фундаментом научно-технического прогресса, а оснований для этого достаточно. Физика в большей мере, чем любая из естественных наук, расширила границы человеческого познания. Физика дала в руки человека наиболее мощные источники энергии, чем резко увеличила власть человека над природой. Физика является сейчас теоретическим фундаментом большинства основных направлений технического прогресса и областей практического использования технических знаний. Физика, ее явления и законы действуют в мире живой и неживой природы, что имеет весьма важное значение для жизни и деятельности человеческого организма и создания естественных оптимальных условий существования человека на Земле. Человек – элемент физического мира природы. На него, как и на все объекты природы, распространяются законы физики, например, законы Ньютона, закон сохранения и превращения энергии и другие. Поэтому, на мой взгляд, затронутая тема является чрезвычайно актуальной для современного человека.

Обоснование выбора проекта: мы каждый день, не замечая этого, соприкасаемся с физикой. Мне стало интересно, а, как и где мы соприкасаемся с физикой в быту или на улице.

Цели и задачи моей работы:

  1. Выяснить, как физика влияет на жизнь человека и сможет ли современный человек прожить без её применения.
  2. Показать необходимость физических знаний для повседневной жизни и познания самого себя
  3. Проанализировать, насколько человек интересуется физикой в 21веке.
Читайте также:  От чего полезна чага березовая

Вот мальчик вращает камень на веревке. Он крутит этот камень все быстрее, пока веревка не оборвется. Тогда камень полетит куда-то в сторону. Какая же сила разорвала веревку? Ведь она удерживала камень, вес которого, конечно, не менялся. На веревку действует центробежная сила, отвечали ученые еще до Ньютона.

Еще задолго до Ньютона ученые выяснили, для того, чтобы тело вращалось, на него должна действовать сила. Но особенно хорошо это видно из законов Ньютона. Ньютон был первым ученым, кто систематизировал научные открытия. Он установил причину вращательного движения планет вокруг Солнца. Силой, вызывающей это движение, оказалась сила тяготения.

Раз камень движется по окружности, значит, на него действует сила, изменяющая его движение. Ведь по инерции камень должен двигаться прямолинейно. Эту важную часть первого закона движения иногда забывают.

Движение по инерции всегда прямолинейно. И камень, оборвавший веревку, также полетит по прямой линии. Сила, исправляющая путь камня, действует на него все время, пока он вращается. Эта постоянная сила называется центростремительной слой. Приложена она к камню.

Но тогда, по третьему закону Ньютона, должна появиться сила, действующая со стороны камня на веревку и равная центростремительной. Эта сила и называется центробежной. Чем быстрее вращается камень, тем большая сила должна действовать на него со стороны веревки. Ну и, конечно, тем сильнее камень будет тянуть — рвать веревку. Наконец ее запаса прочности может не хватить, веревка разорвется, а камень полетит по инерции теперь уже прямолинейно. Так как он сохраняет свою скорость, то может улететь очень далеко.

Если у вас есть зонтик, та вы можете перевернуть его острым концом в пол и положите в него, например кусочек бумаги или газеты. Затем сильно раскрутите зонтик.

Вы удивитесь, но зонтик выкинет ваш бумажный снаряд, перемещая его от центра к раю обода, а затее и вовсе наружу. То же самое произойдет, если вы положите предмет потяжелее, например детский мячик.

Сила, действие которой вы наблюдали в этом опыте, называется центробежной силой. Эта сила является следствием более глобального закона инерции. Поэтому предметы участвующие, во вращательном движении стремясь согласно этому закону сохранять направление и скорость своего первоначального состояния как бы «не успевают» двигаться по окружности и поэтому начинают «вываливаться» и двигаться к краю окружности.

С центробежной силой мы встречаемся практически постоянно в нашей жизни. О чем сами и не подозреваем даже. Вы можете взять камень и привязать его к веревке и начать вращать. Вы сразу почувствуете, как веревка натягивается, и стремиться разорваться под действием центробежной силы. Эта же сила помогает велосипедисту или мотоциклисту в цирке описывать «мертвую петлю». Центробежной силой извлекают мед из сотов и сушат белье в стиральной машине. И рельсы для крутых поворотов поездов и трамваев именно из-за центробежного эффекта делают «внутренний» ниже, чем «наружный».

Каждому кто изучал физику, известно высказывание знаменитого греческого ученого Архимеда: «Дайте мне точку опоры, и я переверну Землю». Оно может показаться несколько самоуверенным, тем не менее основания к такому заявлению у него были. Ведь если верить легенде, Архимед воскликнул так, впервые описав с точки зрения математики принцип действия одного из древнейших механизмов рычага. Когда и где впервые было использовано это элементарное приспособление, основа основ всей механики и техники, установить невозможно. Очевидно, еще в глубокой древности люди заметили, что отломить с дерева ветку легче, если нажать на ее конец, а палка поможет приподнять с земли тяжелый камень, если поддеть его снизу. Причем чем длиннее палка, тем легче сдвинуть камень с места. И ветка, и палка являются простейшими примерами применения рычага принцип его действия люди интуитивно понимали еще в доисторические времена. Большинство древнейших орудий труда мотыга, весло, молоток с ручкой и другие основаны на применении этого принципа. Простейший рычаг представляет собой перекладину, имеющую точку опоры и возможность вращаться вокруг нее. Качающаяся дощечка, лежащая на круглом основании, вот самый наглядный пример. Стороны перекладины от краев до точки опоры называются плечами рычага.

Доменико Фетти. Задумавшийся Архимед. 1620 г. Уже в V тысячелетии до н. э. в Месопотамии использовали принцип рычага для создания равновесных весов. Древние механики заметили, что, если установить точку опоры ровно под серединой качающейся дощечки, а на ее края положить грузы, вниз опустится тот край, на котором лежит более тяжелый груз. Если же грузы будут одинаковы по весу, дощечка примет горизонтальное положение. Таким образом, опытным путем было обнаружено, что рычаг придет в равновесие, если к равным его плечам приложить равные усилия. А что, если сместить точку опоры, сделав одно плечо более длинным, а другое коротким? Именно так и происходит, если длинную палку подсунуть под тяжелый камень. Точкой опоры становится земля, камень давит на короткое плечо рычага, а человек на длинное. И вот чудеса! тяжеленный камень, который невозможно оторвать от земли руками, поднимается. Значит, чтобы привести в равновесие рычаг с разными плечами, нужно приложить к его краям разные усилия: большее усилие к короткому плечу, меньшее к длинному. Этот принцип был использован древними римлянами для создания другого измерительного прибора безмена. В отличие от равновесных весов, плечи безмена были разной длины, причем одно из них могло удлиняться. Чем более тяжелый груз нужно было взвесить, тем длиннее делали раздвижное плечо, на которое подвешивалась гиря. Конечно, измерение веса было лишь частным случаем использования рычага. Куда более важными стали механизмы, облегчающие труд и дающие возможность выполнять такие действия, для которых физической силы человека явно недостаточно. Знаменитые египетские пирамиды и по сей день остаются самыми грандиозными сооружениями на Земле. До сих пор некоторые ученые выражают сомнение в том, что древним египтянам было под силу возвести их самостоятельно. Пирамиды строили из блоков весом около 2,5 т, которые требовалось не только перемещать по земле, но и поднимать наверх.

Со статическим электричеством сталкивается каждый из нас. Например, вы, наверное, замечали, что после продолжительного расчёсывания ваши волосы начинают «торчать» в разные стороны. Либо же во время снятия одежды в темноте наблюдаются небольшие многочисленные разряды.

Если же рассматривать данный эффект с физической стороны, то это явление характеризуется потерей предметом внутреннего баланса, который вызван утратой (или приобретением) одного из электронов. Проще говоря – это самопроизвольно образующийся электрический заряд, возникающий из-за трения поверхностей друг о друга.

Причиной этому служит соприкосновение двух различных веществ самого диэлектрика. Атомы одного вещества отрывают электроны другого. После их разъединения каждое из тел сохраняет свой разряд, но при этом разность потенциалов растёт

Электричество может быть вашим хорошим помощником. Но для этого следует досконально знать его особенности и умело использовать их в нужном направлении. В технике применяют различные способы, которые основываются на следующих особенностях. Когда маленькие твёрдые либо жидкие частицы веществ попадают под воздействие электрического поля, то они притягивают ионы и электроны. Происходит накапливание заряда. Их движение продолжается уже под воздействием электрического поля. В зависимости от того, какое использовать оборудование, можно при помощи этого поля осуществлять различное управление движением данных частиц. Всё зависит от процесса. Такая технология стала часто применяться в народном хозяйстве.

Окрашиваемые детали, которые перемещаются на контейнере, например, детали машины, заряжают положительно, а частицы краски – отрицательно. Это способствует быстрому их стремлению к деталям. В результате такого технологического процесса формируется очень тонкий, равномерный и достаточно плотный слой краски на поверхности предмета.

Частицы, которые были разогнаны электрическим полем, с большим усилием ударяются о поверхность изделия. Благодаря этому достигается высокая насыщенность красочного слоя. При этом расход самой краски существенно уменьшается. Она остаётся только на самом изделии.

Копчение представляет собой пропитку продукта с помощью «древесного дыма». Благодаря его частичкам, продукт получается очень вкусным. Это помогает предотвратить и его быструю порчу. Электрокопчение основывается на следующем: частички «коптильного дыма» заряжают положительными зарядами. В качестве отрицательного электрода выступает, как вариант, туша рыбы. Эти частицы дыма опускаются на неё, где происходит их частичное поглощение. Данный процесс длится всего лишь считанные минуты. А обычное копчение – это очень длительный процесс. Так что выгода очевидна.

Для того чтобы в электрическом поле образовался ворсяной слой на любом виде материала, его заземляют, а на поверхность наносят слой клея. Потом сквозь специальную заряженную сетку из металла, которая располагается над данной плоскостью, начинают пропускать ворсинки. Они очень быстро ориентируются в данном электрическом поле, что способствует их равномерному распределению. Ворсинки опускаются на клей чётко перпендикулярно плоскости материала. При помощи такой уникальной технологии удаётся получить различные покрытия, схожие с замшей или даже бархатом. Такая методика позволяет получить различные разноцветные рисунки. Для этого используют ворс разной окраски и специальные шаблоны, помогающие создать определенный узор. Во время самого процесса их прикладывают поочерёдно на отдельные участки самой детали. Таким способом очень легко получить разноцветные ковры.

В чистоте воздуха нуждается не только сам человек, но ещё и очень точные технологические процессы. Из-за наличия большого количества пыли всё оборудование приходит в негодность раньше своего срока. Например, засоряется система охлаждения. Улетающая пыль с газами – это очень ценный материал. Обусловлено это тем, что очистка различных промышленных газов сегодня крайне необходима. Сейчас данную проблему очень легко решает электрическое поле. Как это работает? Внутри трубы из металла находится специальная проволока, играющая роль первого электрода. Вторым электродом служат её стенки. Благодаря электрическому полю, газ в нём начинает ионизироваться. Ионы, заряженные отрицательно, начинают присоединяться к частицам дыма, который поступает вместе с самим газом. Таким образом, происходит их заряд. Поле способствует их движению и оседанию на стенках трубы. После очищения газ движется на выход. На крупномасштабных ТЭС удаётся уловить 99 процентов золы, которая содержится в выходящих газах.

Благодаря отрицательному либо положительному заряду мелких частиц, получается их соединение. Частички при этом распределены очень равномерно. К примеру, при производстве хлеба не нужно совершать трудоёмкие механические процессы, чтобы замесить тесто. Крупинки муки, которые предварительно заряжают положительным зарядом, поступают при помощи воздуха в специально предназначенную камеру. Там происходит их взаимодействие с водными каплями, заряженными отрицательно и уже содержащими дрожжи. Они притягиваются. В результате получается однородное тесто.

При изучении физики в школе надо больше внимания уделять вопросам практического применения физических знаний в быту. В школе следует знакомить учащихся с физическими явлениями, лежащими в основе работы бытовых приборов. Особое внимание надо уделять вопросам возможного негативного воздействия бытовых приборов на организм человека. На уроках физики учащихся надо учить пользоваться инструкциями к электроприборам. Перед тем, как позволить ребёнку пользоваться бытовым электроприбором, взрослые должны убедиться в том, что ребёнок твёрдо усвоил правила безопасности при обращении с ним. Для того чтобы избежать большинство неприятных бытовых ситуаций нам необходимы физические знания!

Физика наука точная и сложная. Поэтому возникает вопрос, есть ли кому в 21 веке продвигаться в этой науке дальше, изучать её более глубже и уделять особое внимание?

Думаю что скамья запасных еще не опустела, есть множество ВУЗов с факультетами изучающими этот предмет, а значит и людей которые занимаются данной наукой, конечно не каждому хочется связать свою жизнь именно с физикой, но при получении образования или уже выбора профессии физика может являться весомым фактором, которая определит кем тебе быть в дальнейшем. Ведь физика – одна из самых удивительных наук! Физика столь интенсивно развивается, что даже лучшие педагоги сталкиваются с большими трудностями, когда им надо рассказать о современной науке.

источник

Физика — одна из самых важных и древних наук. Благодаря ей, происходит изучение множества различных процессов. Поэтому специальности, связанные с физикой, будут актуальны ещё долгое время. Физика -фундаментальная наука, применение которой используется во многих сферах деятельности.

  1. Физик-инженер.
  2. Физик-механик.
  3. Инженер-конструктор.
  4. Инженер-нефтяник.
  5. Инженер по ядерной физике.
  6. Специалист в компьютерных технологиях.
  7. Инженер-технолог.
  8. Архитектор.

Физик-инженер:

Профессия, связанная со знанием физических явлений и постоянной практикой. В этой профессии необходимо знать все механические процессы, так как эта работа связана с оборудованием на различных предприятиях и внедрением новых технологий. В случае изобретения новой технологии в каких-либо исследованиях, вас ждёт невероятный карьерный рост и успех. Направлений в этой сфере достаточно много, но можно выделить три самых основных:

  • Теплофизика — исследование тепломассовых и гидродинамических процессов.
  • Ядерная физика — исследование альтернативного вида топлива и внедрение новых технологий. Внедрение различных измерительных приборов.
  • Разработка и совершенствование технологических процессов, таких как композиционные материалы.

Физик-механик:

Профессия, связанная с машиностроением и автоспортом, а именно внедрением новейших двигателей с огромной мощностью, технологий, способствующих уменьшить сопротивление воздуха и т. д. Работая в крупной компании, вы сможете добиться реального успеха.

Читайте также:  Чем полезна морковь тушеная

Инженер-конструктор:

Главная деятельность этой профессии состоит в том, чтобы объединить составные части в целостный продукт. Эта профессия требуется в производстве, где нужно создание различных конструкций, электросхем и механизмов.

Инженер-нефтяник:

Самая высокооплачиваемая профессия, требующая серьёзных навыков. В сфере нефти и газодобычи постоянно нужны новые технологии и оборудование, способствующие улучшить результаты работы. И если вы сможете помочь этой сфере, вас будет ждать высокая награда.

Инженер по ядерной физике:

Применяет научные и технические данные для обогащения ядерной энергии, занимается проблемой утилизации радиоактивных отходов. Применяет знания в ядерной физике, для создания новейших технологий, таких как ядерное оружие, реакторы и ядерные электростанции. Вместе с физиками-атомщиками изучают свойства атомов. Изобретают новые материалы, например, новые поколения суперников и различные полимеры.

Специалист в компьютерных технологиях:

На данный момент компьютерные технологии остаются актуальным видом деятельности. Такие специалисты могут быть втянуты в теоретические проблемы программирования, обработку цифровых данных и решение задач программного обеспечения.

Инженер-технолог:

Профессия, в которой специальность техническая, физика встаёт на первое место. Здесь необходимо знать все технические процессы и быть в курсе самых новых технологий. Этот специалист занимается техническим обустройством предприятия и обновлением оборудования. Сам выбирает оборудование и технический режим работы. На его плечи ложится большой груз ответственности, так как от его решений будет зависеть будущее предприятия. И если вы будете владеть всеми профессиональными качествами профессии, то у вас обязательно должно все получиться.

Творческая профессия, но все же связанная с физикой и другими науками. Чтобы получить эту специальность, нужно понимать все физические процессы и владеть навыками компьютерного моделирования. Но и, конечно, чтобы быть профессиональным архитектором, у вас должна быть склонность к творчеству.

Разобрав основные специальности, перейдём к профессиям, которые не так сильно связаны с другими науками как с физикой. Самая сложная из них — учёный. Роль учёных в мире очень велика. Именно благодаря им происходят важные научные открытия. Есть много людей, кто хотел бы сделать своё научное открытие, но для этого нужно приложить немало усилий. Чтобы стать учёным, необходимо ещё с детства интересоваться науками. Вы должны быть гением, способным целыми днями работать, не ради денег, а ради науки и научных достижений.

Если в университете вы показываете себя, как хорошего и способного специалиста, то университет сможет сам направить вас в какой-либо исследовательский центр. Выучиться на учёного нельзя. Ими становятся в процессе обучения, в том случае если вы реально разбираетесь в определённой теме и она толкает вас вперёд.

Если вы хотите связать вашу жизнь только с теоретической физикой, то вам следует подумать о профессии преподавателя. Вы сможете не только проводить лекции, но и заняться каким-либо исследованием, что принесёт вам явную пользу. Но чтобы стать профессиональным учителем физики, недостаточно только одних знаний. Необходимо уметь общаться со своими учениками и понимать их и направлять на правильный путь.

Многие считают, что девушки не способны заниматься деятельностью, связанной с физикой. Но это глубокое заблуждение. Есть девушки, которые знают физику намного лучше мужчин и способны работать различными инженерами и проектировщиками наравне с мужчинами. Если подходить к выбору профессии для девушек, то здесь может подойти любая профессия из приведённого списка. Но чаще всего они выбирают роль преподавателей. Существует множество учёных женщин, которые тоже приносят свой вклад в науку. Не стоит думать, что профессии связанные с физикой подходят только для мужчин.

источник

Физика – востребованная область знаний. С каждым десятилетием благодаря развитию технологий появляются новые профессии, связанные с физикой. Выпускники и выпускницы технических вузов работают в разных областях от преподавания и науки до производства и космических технологий.

Физические дисциплины охватывают большой массив знаний, без которых невозможны развитие современной науки и работа промышленных предприятий. Физическая наука тесно связана с другими естественнонаучными дисциплинами и неотрывна от производства.

Любая машина, любой даже самый сложный компьютер или станок работают по физическим законам, благодаря точным расчетам высококвалифицированных специалистов. Таким специалистом может стать любой абитуриент, выбрав профессию, для которой нужна физика.

Физическая дисциплина лежит в основе технического прогресса и решает множество задач:

  • поиск и освоение новых источников энергии;
  • создание прочных, легких, дешевых строительных материалов;
  • усовершенствование старых и разработка новых технологий;
  • автоматизация и роботизация производства;
  • создание электронно-вычислительной техники;
  • повышение КПД производственных машин;
  • проектирование машин, двигателей, навигационных систем и т.д.;
  • охрана природопользования, защита от радиоактивного излучения, создание безопасных условий жизни;
  • электрификация производств, дорог, сельского хозяйства и страны в целом.

Это интересно! Для чего нужна и что это такое геодезия

Прежде чем разобраться, для каких профессий необходима физика, стоит рассмотреть все ее направления. Она относится к точным наукам, но тесно взаимосвязана с химией, биологией, экологией, медициной.

  • механику;
  • электричество;
  • магнитное излучение;
  • физические свойства металлов;
  • полупроводники, проводимость;
  • свойства веществ при высоких давлениях;
  • свет, оптические явления, лазерное излучение;
  • радиацию и методы ее применения;
  • акустику;
  • происхождение и эволюцию Вселенной;
  • звезды, черные дыры, планеты и другие космические объекты;
  • плазму и методы ее применения;
  • термодинамику;
  • элементарные частицы и квантовые поля;
  • ядерные проблемы энергетики.

Охватить всю физическую науку довольно сложно. В каждом разделе найдется тысяча неизученных вопросов и множество узконаправленных квалификаций. Выбрав одно из направлений, можно подобрать конкретные специальности.

Это интересно! Выбираем профессии связанные с наукой географией

Профессии, где нужна физика и смежные дисциплины, подойдут абитуриентам с математическим складом ума. Некоторые педагоги и родители немотивированно считают, что технические профессии не для девушек.

Однако на предприятиях успешно работают инженеры, технологи, аналитики, проектировщики женского пола. Профессии, связанные с физикой, для девушек откроют перспективы карьерного роста в технической области с достойной оплатой труда.

Не только девушки, но и юноши плохо представляют роль физики в профессиональной подготовке. Какую же профессию выбрать с хорошими оценками по физике?

Это интересно! Выбираем профессии связанные с наукой биологией

На первом месте стоит техническая физика. На производстве постоянно требуются специалисты, разбирающиеся в новых технологиях, которые смогут усовершенствовать работу заводов, повысить производительность, сократить расходы, не теряя качества продукции.

Существует множество специальностей технической физики. Работа в этой области даст возможность применить законы природы и технологии на практике. Основная профессия в данной отрасли – инженер определенной квалификации. В таблице описаны наиболее востребованные области, где может работать выпускник.

Должность Обязанности Куда идти работать
Механик Разработка технологий автомобилестроения, проектирование автомобилей, двигателей Завод автомобилестроения, частные компании, разрабатывающие новые модели автомобилей
Нефтяник Разработка систем добычи нефти и газа, совершенствование оборудования, внедрение новых технологий Нефтегазодобывающая промышленность
Специалист машиностроения Конструирование и испытание сложных машин: ракет, самолетов, орбитальных станций, спутников Государственные и частные компании аэрокосмической отрасли
Медик Разработка и внедрение сложного медицинского оборудования: томографов, спектрофотометров, термостатов и т.д. Сфера теоретической медицины, частные компании, разработки оборудования
Ядерщик, атомщик Изучение строения атомов, утилизация ядерных отходов, налаживание и поддержка атомных электростанций, ядерного оружия, реакторов Военная отрасль, медицина, промышленность
Аналитик Изучение особенностей работы любой техники, расчет рисков Любое промышленное предприятие
Технолог Организация производственных процессов, разработка и внедрение технологий на производстве, контроль качества, освоение мощностей Предприятие любой отрасли
Конструктор Проектирование деталей, станков, оборудования Судостроительные, авиационные, приборостроительные заводы

Обратите внимание! Специальность инженер-физик – общее название профессии, которой обучают в вузах разной направленности. В зависимости от квалификации выпускник становится инженером в области ядерной энергетики, кибернетики, робототехники, металлургии и т.д.

Наиболее интересные и прогрессивные специальности связаны с научной отраслью. С развитием и требованиями научного знания их список постоянно пополняется. Выпускники, которые хотят заниматься исключительно научной деятельностью, поступают после вуза в аспирантуру.

Как правило, уже со студенческих времен амбициозные студенты начинают работать над одной проблемой и продолжают исследование уже в профессиональной деятельности, становясь экспертами в определенной области.

Если абитуриента волнуют проблемы современной науки, захватывают теоретические расчеты и эксперименты, увлекают вопросы космоса, то наука станет верным выбором.

Научные профессии, связанные с физикой:

  • астроном исследует строение, происхождение, эволюцию Вселенной;
  • астрофизик изучает строение небесных тел, химический состав, свойства звезд, солнца, планет, туманностей, черных дыр и т.д.;
  • биофизик изучает физические и химические процессы во всех живых организмах на всех уровнях организации, влияние различных явлений на живой организм (вибрации, звук, радиация и т.д.);
  • математик производит расчеты, проектирует, решает практические задачи, связанные с физическими явлениями.

Возьмите на заметку! Физик – научный работник, ученый, который занимается проблемами разных областей. Зачастую работа связана с вычислениями, экспериментами, проработкой гипотез или поиском ошибок в научных работах коллег.

По специальности физика выбрать, кем работать, не составит труда. Физические и точные науки не предполагают каких бы то ни было ограничений в поиске работы. Если идти на завод не хочется, а наука не привлекает, есть другие области, где пригодится техническое образование.

Несколько профессий, связанных с физикой, приведем списком:

  • преподаватель в школе или вузе;
  • лаборант;
  • энергетик;
  • наладчик высокоточных приборов;
  • метеоролог;
  • наноинженер;
  • младший научный сотрудник;
  • геофизик;
  • геммолог (специалист по драгоценным камням);
  • специалист по композитным материалам;
  • популяризатор науки, научный журналист.

Совет! Получить специальность по физическим дисциплинам можно в технических вузах, предлагающих обучение профессии для абитуриентов. Это не только ведущие вузы Москвы (МГУ им. М.В. Ломоносова) и Петербурга (СПбГПУ), но и любые технические вузы страны (УрФУ им. Б. Н. Ельцина, ЮФУ, КФУ, ТУСУР и т.д.).

Независимо от дальнейшей профессиональной деятельности, в технических вузах разных направлений преподают общие физические дисциплины:

  • теоретический курс;
  • прикладной курс;
  • высшая математика;
  • квантовая механика;
  • радиофизика;
  • электроника;
  • оптика;
  • нанотехнологии;
  • строение реального кристалла;
  • свойства полимерных материалов и полупроводников;
  • молекулярное строение тел.

Значительную роль физика играет в профессиональной деятельности. Обучение в физико-технических вузах обеспечит надежное будущее, т.к. ни один завод не обходится без специалистов технических профессий. Со знанием физических дисциплин можно свободно выбирать, кем работать и чем заниматься всю жизнь.

источник

Самая распространенная жалоба школьника на трудность предмета звучит так: “Зачем мне эта дурацкая …. (тут можно поставить что угодно – физику, математику, историю, биологию), если я не собираюсь заниматься ей после школы?!”

Действительно, а нужно ли бедному ребеночку зубрить формулы и разбираться с законами Ньютона и Фарадея? Может, ну ее, эту пакость, займемся лучше чем-то интересным? Удивительно, но многие взрослые и сами не понимают, зачем учили физику в школе и искренне не видят связи между этой занимательной наукой и повседневной жизнью. Давайте же найдем эту связь!

Представьте себе свой обычный день. Вот вы встали с кровати, потянулись и посмотрели в зеркало. И законы физики заработали прямо с началом вашего дня!

Движение, отражение в зеркале, гравитация, которая заставляет вас идти по земле, а воду течь в раковину, а не вам в лицо, сила, которая требуется для того, чтобы поднять сумку или открыть дверь – все это физика .

Обратите внимание на лифт, легко и быстро поднимающий вас на нужный этаж, автомобиль или другой транспорт, компьютеры, планшеты и телефоны. Без физики все это никуда бы не поехало, не включилось и не заработало.

Развитие физики можно приравнять к прогрессу.

Сначала люди поняли законы оптики и изобрели простые очки , чтобы те, кто плохо видит, могли лучше ориентироваться, читать и писать. А затем на свете появились микроскопы , с помощью которых ученые сделали невероятные открытия в таких областях, как биология и медицина. И телескопы , в которые астрономы увидели планеты, звезды и целые галактики и смогли сделать выводы об устройстве Вселенной. Каждое открытие в физике помогает человечеству сделать новый шаг вперед.

Хорошо, скажете вы. Но ведь для всего перечисленного, для всех этих открытий и разработок существуют физики. То есть люди, сознательно выбравшие именно эту науку своей основной профессией. Причем же здесь остальные, да еще и гуманитарии? Им-то на что эти знания, если можно просто прочитать инструкцию к своему телефону и этого будет достаточно для его использования?

Мы уже писали, что в каждом гуманитарии может обнаружиться и технарь, но кроме этого, приведем несколько примеров из повседневной жизни, когда базовое знание физики может пригодиться каждому. Причем, разберем только один раздел физики, практически полностью созданный Исааком Ньютоном, — механику.

Итак, все во Вселенной постоянно двигается, включая нашу планету и землю, по которой мы ходим. А ходим мы почти ежедневно в разные места. Значит, мы постоянно рассчитываем, насколько быстро доберемся до театра, работы, друзей, чтобы не опоздать. Задачи на скорость мы решаем в средней школе в рамках курса математики, но на самом деле это базовая физика.

Теперь представьте, что вы выбираете машину. У вас есть желание получить резвый автомобиль, но вам нужно возить семью, поэтому размер тоже имеет значение. То есть резвый и большой. И как же понять, какой подойдет? На что вы обратите внимание? На ускорение , конечно! Есть такой параметр – постоянное ускорение, то есть разгон от 0 до 100 км за количество секунд. Так вот чем меньше время от 0 до 100, тем бодрее будет ваша машина на старте и виражах. И это подскажет вам физика!

Читайте также:  Что такое рудные и нерудные полезные ископаемые

Когда вы начинаете (и продолжаете) водить машину, кое-что из базового курса физики вам очень пригодится. Например, вы сами поймете, что резко тормозить на трассе при скорости 120 км/ч только потому, что вам внезапно захотелось полюбоваться красивым видом, пожалуй, не стоит.

Даже если за вами не едет на такой же скорости еще несколько автомобилей, водители которых могут не успеть среагировать. Просто при торможении ускорение отрицательное, поэтому всех, кто сидит в машине, резко бросает вперед. Поверьте, впивающиеся в тело ремни и растянутые шейные мышцы – это неприятно. Просто имейте в виду такое понятие из физики, как ускорение.

Физика расскажет о законе тяготения . То есть мы уже и так знаем, что если бросить предмет, то он упадет на землю. Что это значит? Земля притягивает нас и все предметы. Мало того, планета Земля притягивает даже такой тяжелый космический предмет, как Луна. Заметим, что Луна не улетает по своей траектории и каждый вечер показывается людям. Также не зависают в воздухе любые штуки, которые мы в сердцах бросили на пол. На брошенные предметы действует еще и ускорение, потому что у Земли огромная сила притяжения. А также сила трения.

Поэтому, зная об этих законах, можно понять, что происходит, если человек прыгает с парашютом. Связана ли площадь парашюта связана с замедлением скорости падения? Может, стоит просить парашют побольше? Как действует импульс на коленки парашютиста, и почему нельзя приземляться на прямые ноги?

А как выбрать горные лыжи? Вы отлично катаетесь или только начинаете? Подумайте о трении, уточните именно эти параметры своих новых лыж. Если вы новичок, не знающий физики, то очень вероятна ошибка в выборе. Успеете ли вы остановиться?

Окей, вы не собираетесь прыгать с парашютом и ничего не хотите знать про горные лыжи.

Вернемся к повседневности. Вот перед вами гайка и гаечный ключ. За какую часть ключа нужно взяться, чтобы приложить к гайке максимальную силу? Те, кто изучал физику, возьмутся за ключ как можно дальше от гайки. Чтобы открыть тяжеленную дверь в старое здание, нужно давить на нее с самого краю, подальше от петель. Нужно ли рассказывать про рычаг и точку опоры, которой так не хватало Галилею?

Наверное, этих примеров пока достаточно для иллюстрации ежедневного присутствия физики в нашей жизни. И это была только механика! А ведь есть еще оптика, которую мы упоминали в начале статьи, и электричество с магнитными полями. И это мы скромно молчим про теорию относительности.

Поверьте, физика на базовом уровне необходима каждому, чтобы не выглядеть глупо и смешно в самых обычных ситуациях.

источник

Человек ежедневно сталкивается с различными физическими явлениями и даже не придает этому значения. Даже функционирование организма зачастую подчиняется физическим законам.

Становление и развитие физики как науки исторически связано с развитием познаний в медицине. Существует множество подтверждений тому, что большое количество физических понятий и явлений появилось благодаря исследованиям и наблюдениям медиков. Научные достижения в физике также находят применение в современной медицине. Поэтому я решила выявить, как физика и медицина связаны между собой.Тема работы актуальна и не потеряет своей актуальности в будущем, а каждому человеку будет полезно знать об этом для собственного развития и расширения кругозора.

Итак, цель работы – показать взаимосвязь медицины и физики с помощью исторических и современных примеров.

Историческая связь физики с медициной.

Изначально между медициной и физикой была очень тесная связь, да и разделения на эти науки еще не было. О том, что такое теплота, задумались еще в древности. Закладка основ науки о тепле и изобретение первых термометров произошли благодаря Клавдию Галену, который ввел понятия «градус» и «температура».

Многие знаменитые личности, которые имели медицинское образование, прославились благодаря исследованиям физических явлений. Например, Томас Юнг, совместно с Френелем являющийся создателем волновой оптики, открыл один из дефектов зрения – дальтонизм, но дефект был назван в честь первого, у кого он обнаружился. Немецкий врач и ученый Герман Гельмгольц сделал великие открытия не только в физике, но и в физиологии зрения, слуха, нервной и мышечной систем, а также пытался применить к физиологическим исследованиям знания по физике и математике. Жан-Луи Пуазейль изучал мощность сердца как насоса и исследовал законы движения крови в капиллярах и венах. Обобщив результаты своих исследований, Пуазейль получил формулу, которая оказалась крайне важной для физики[ 1 , 2 ]:

где p1— p2 = Δp– перепад давления на концах капилляра, Па;

Q– объемный расход жидкости, м 3 /с;

η–коэффициент динамической вязкости, Па*с;

Медицинская физика включает изучение систем и органов человека с точки зрения физики:

– скелет и мышцы – механика, теория упругости, теория устойчивости;

– глаз и зрение – оптика и электричество;

– слух – акустика и электрические импульсы;

– сердце и сосуды – гидравлика;

– мозг и нервная система – электричество;

– дыхательная система и обмен веществ – диффузия.

Цель этой науки – изучение систем профилактики и диагностики заболеваний, а также лечение больных с помощью методов и средств физики, математики и техники. Природа заболеваний и механизм выздоровления во многих случаях имеют биофизическое объяснение[ 3 ].

Первопроходцем в области медицинской физики был Леонардо да Винчи, проводивший исследования механики передвижения человеческого тела.

Медицинская физика по-настоящему стала утверждаться как самостоятельная наука и профессия только во второй половине ХХ в.– с наступлением атомной эры. В медицине стали широко применяться диагностические аппараты, основанные на излучении волн определенной длины, а также на рентгеновском и гамма-излучении, магнитных полях, лазерах и других физических явлениях.

Важнейшим в области медицинского обследования стало создание компьютерных томографов, позволивших, проводить широкий спектр медицинских исследований и сократить время, требуемое на их проведение[ 4 ].

Для того, чтобы показать, как физика связана с медициной в современном мире, рассмотрим несколько примеров [ 5 ].

Для исследования работы сердечно-сосудистой системы, а также выявления отклонений в ней на первом месте остается такой прибор, как тонометр. Конструкция прибора предельно проста: устройство, нагнетающее воздух, манжета, закрепляемая на руке пациента, манометр, который непосредственно и производит измерение, и механическое или электронное устройство, показывающее результаты измерения [ 6 ].

Измерение температуры уже нельзя представить без такого привычного для всех прибора, как термометр. Принцип работы термометра основан на расширении жидкости при повышении температуры (жидкостный), расширении металла при повышении температуры (механический), изменении сопротивления проводника (электронный), изменению уровня светимости, спектра и иных оптических параметров (оптический), изменении давлении газа (газовый) [ 7 , 8 ].

Ультразвуковой аппарат – первичный инструмент диагностики в медицине. Принцип работы прибора основывается на ультразвуке, который не воспринимается человеческим ухом. В обыденности работу аппарата можно описать так: в полость исследуемого объекта посылается ультразвук, при отражении которого создается эхо. Значимость УЗИ-аппаратов невозможно переоценить, однако среди множества достоинств и плюсов есть и недостатки: обследовать методом ультразвука можно только внутренние органы брюшной полости, почек, щитовидной железы и малого таза [ 9 ]. Для того, чтобы выявить, к примеру, перелом кости или дефекты в строении зубов, применяется совсем другой вид приборов – рентген-аппараты.

Рентгеновские аппараты представляют собой приборы, применяющие рентгеновское излучение для получения информации о внутренних органах и костях для исследования на предмет патологий и их последующего устранения. Излучение из аппарата посылается исключительно по трубочкам-излучателям, а сам аппарат надежно защищен корпусом из свинца, хорошо поглощающего излучение. Принцип работы основывается на подаче напряжения к пульту управления и главному трансформатору, откуда возросшее напряжение поступает к рентгеновской трубке, из которой и происходит излучение. Рентгеновские лучи, проходя через кожные покровы, в разной степени поглощаются костной и мышечной тканью, вследствие чего на снимке будут отображаться ярко-белым –кости (наибольшее поглощение лучей происходит кальцием), оттенками серого цвета – соединительные ткани, жир, мышцы, жидкость, самым темным цветом – воздух (меньше всего поглощает излучение). Специальное устройство преобразует излучение в видимое изображение, доступное для наблюдения. В некоторых случаях пациенту в исследуемый орган вводят контрастную субстанцию для большей точности диагностики [ 10 ].

Настоящий прорыв в диагностике произошел после создания томографов. Различают компьютерную и магнитно-резонансную томографию.

Компьютерная томография (КТ) – метод послойного исследования внутреннего строения органов, основан на измерениях и последующей компьютерной обработке разности ослабления рентгеновского излучения различными тканями[ 11 ]. Обычно процедура компьютерной томографии назначается для уточнения диагноза после предварительного осмотра и для установления точного местоположения проблемы. Компьютерный томограф так же является рентгеновским аппаратом, однако его преимущество над последним в том, что снимки делаются под различными углами вследствие вращения рамки томографа вокруг тела пациента, а компьютерная обработка позволяет различать ткани, отличающиеся друг от друга на 0,5%, что повышает точность диагностики в 1000 раз. При КТ в подробностях различимы скелет и ткани легких, а также свежие кровотечения, что позволяет исследовать больных с травмами головы, брюшной полости, грудной клетки, а также выявить инсульт на ранней стадии.

Магнитно-резонансная томография основана на взаимодействии сильного магнитного поля устройства и атомов водорода в организме. Аппарат посылает электромагнитный сигнал определенной частоты и улавливает сигнал атомов водорода, имеющих такую же частоту. Ответный сигнал регистрируется устройством. Разные ткани организма имеют разное количество атомов водорода, соответственно сигнал имеет различные характеристики. Томограф распознает сигнал и преобразует его в изображение. Проводится МРТ точно так же, как КТ, но пациент находится в тоннеле прибора практически полностью, поэтому главным ограничением в применении данного метода является клаустрофобия. Еще одно отличие от КТ – МРТ проводится без использования рентгеновского излучения, в процессе диагностики используется только магнит, который не оказывает вредного воздействия на человека, но достаточных оснований полагать, что метод полностью безопасен, пока нет, так как он достаточно молод и до конца не изучен [ 12 ].

Физиотерапия – совокупность методов лечения с помощью физических факторов (электрический ток, магнитное излучение, воздух, свет и др.).

Электрофорез – воздействие на организм постоянного электрического тока в сочетании с введением через кожу или слизистые оболочки разнообразных препаратов. Принцип действия основан на действии электрического поля, вызывающего разложение лекарственного препарата на заряженные частицы, движущиеся к электродам [ 13 ].

Бытовые аппараты для диагностики

Благодаря достижениям физики в быту мы используем множество различных медицинских приборов, которые позволяют не посещать врача без особой надобности.

К примеру, бытовой глюкометр позволяет контролировать уровень сахара в крови, не выходя из дома и не обращаясь в больницу. Появление таких приборов сильно облегчило жизнь людям, страдающим сахарным диабетом, ведь им необходимо регулярно проверять уровень сахара в крови, а часто ходить в медицинские лаборатории не представлялось возможным.

Бытовые тонометры мало отличаются от механических, используемых в медицинских учреждениях, однако сильно облегчают задачу, так как электронные и полуэлектронные тонометры не требуют фонендоскопа для измерения давления.

Таким образом, в работе показана тесная взаимосвязь физики и медицины. Достижения в области физических и технических изысканий находят широкое применение в медицинских исследованиях, позволяют создавать новые, более точные и надежные приборы и аппараты, которые спасут множество жизней.

Анализ исторических фактов показывает, что одним из двигателей прогресса в физике на протяжении многих веков является медицина, в древности и до XVIII века физика и медицина были неразрывны друг от друга и входили в единую область знаний – естествознание. Врачи-мыслители древности и медики средневековья открыли и описали явления, которые положили начало многим наукам, а самыми крупными из них стали медицина и физика.

Новые болезни требуют новых методов индикации, диагностики и лечения, что подталкивает ученых физиков и связанных с физикой специалистов разрабатывать, создавать и совершенствовать приборы для нужд медицины.

Таким образом, знание того, что две науки развивались совместно и под влиянием нужд обеих, необходимо не только тем, кто с этими науками связан, но и всем, кто хочет расширить свой кругозор. И каждый человек может стать исторической личностью, внеся свой вклад в развитие знаний.

Список использованной литературы

1Смолова А. А. Значение физики в медицине / А. А. Смолова, И. В. Щербакова // Студенческая наука XXI века: материалы XII Междунар. студенч. науч.-практ. конф. (Чебоксары, 25 янв. 2017 г.) / — Чебоксары: ЦНС «Интерактив плюс», 2017. — № 1 (12). — С. 55–57.

2Петренко Ю. Нужна ли физика врачу? / Ю. Петренко // Наука и жизнь.– №3.– 2003.

3Подколзина В. А. Медицинская физика/ В. А. Подколзина – Москва: ЭКСМО, 2007.

источник

Источники:
  • http://edunews.ru/professii/statyi/svyazannie-s-fizikoy.html
  • http://rosuchebnik.ru/material/fizika-vokrug-nas-fizika-v-bytu-7355/
  • http://obrazovanie.guru/karera/professii-svyazannye-s-fizikoj-i-ih-osobennosti.html
  • http://znaniya.guru/karera/professii.html
  • http://unium.ru/blog/do-i-really-need-physics/
  • http://school-science.ru/4/11/286